Revisional surgeries after failed restrictive bariatric operations: a meta-analysis Hatem K. El-Gohary^a, Amr Abdelbaeth^b, Hanan A. Sayed^c, Ayman Kamal^a

^aDepartment of General Surgery, Faculty of Medicine, ^cDepartment of Public Health and Community Medicine, Theodor Bilharz Research Institute, Faculty of Medicine, Helwan University, Helwan, ^bDepartment of General Surgery, Egyptian Ministry of Health, Cairo

Correspondence to Amr Abdelbaeth, BSc, MSc, Department of General Surgery, Egyptian Ministry of Health, Cairo 31951, Egypt. Tel: +201096631632; E-mail: amrabdelbaeth@hotmail.com

Received: 19 February 2023 Revised: 8 March 2023 Accepted: 19 March 2023 Published: 9 June 2023

The Egyptian Journal of Surgery 2023, 42:302–329

Introduction

Recently laparoscopic sleeve gastrectomy has gained increased popularity both as a primary operation for weight reduction and as a revisional procedure after failed restrictive bariatric surgery. On the contrary, the conversion to laparoscopic Rouxen-Y gastric bypass is a solution with some drawbacks such as long operative time and higher complication rates.

Aim

To find an evidence of BMI reduction and/or less surgical complications following revisional surgeries (laparoscopic Roux-en-Y gastric bypass, mini gastric bypass-one-anastomosis gastric bypass, and laparoscopic sleeve gastrectomy) after failed restrictive bariatric surgeries (vertical banded gastroplasty or laparoscopic adjustable gastric banding).

Patients and methods

A retrospective observational secondary study was performed on published research and meta-analysis for each eligible study according to inclusion and exclusion criteria.

Results

The 24-, 36-, and 48-month postoperative extra weight loss percentage was lower in sleeve gastrectomy than gastric bypasses, with overall significantly better decrease. Conversely, when comparing RYGB with mini gastric bypass at 12 months after conversion, there was more extra weight loss percentage for RYGB, with significant overall difference.

Conclusion

Our meta-analysis showed that both sleeve gastrectomy and gastric bypasses as revisional operations had no significant difference regarding postoperative leakage and major bleeding.

Keywords:

gastric bypass, restrictive bariatric surgeries, revisional surgeries

Egyptian J Surgery 42:302–329 © 2023 The Egyptian Journal of Surgery 1110-1121

Introduction

Obesity is a rising epidemic, and bariatric surgery continues to be the main therapeutic mode for a high rate of sustainable weight loss [1]. Gastric restrictive procedures, or gastroplasties, were then developed because it was considered that reduction of the size of the stomach would lead to an earlier sensation of satiety. These operations included horizontal gastroplasty, vertical banded gastroplasty (VBG), and laparoscopic adjustable gastric banding (LAGB) [2].

The main problem after VBG is that patients experience recurrence of their obesity. Overall, 55% of patients undergoing VBG have ultimately undergone revisional surgery [3] because of inadequate weight loss secondary to gastrogastric fistula or gastric motility problems from gastric outlet obstruction. Historically, the majority of patients with inadequate weight loss were converted to RYGBP [4]. There are available options to manage the complications of LAGB, including band removal without replacement and band revision, which are associated with poor outcomes [5]. Conversion to an alternative bariatric procedure is another option such as laparoscopic sleeve gastrectomy (LSG), mini gastric bypass-one anastomosis gastric bypass (MGB-OAGB), and laparoscopic Roux-en-Y gastric bypasses (LRYGB), which have been proposed as the main operations of choice [6].

Recently, LSG has gained increased popularity both as a primary operation for weight reduction [7] and as a revisional procedure after failed restrictive bariatric surgery [8]. On the contrary, the conversion to

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

LRYGB is a solution with some drawbacks such as long operative time and higher complication rates [9].

Patients and methods Study design

A retrospective observational secondary study of published research and meta-analysis was done. The protocol was approved by the faculty of Medicine-Helwan University- Research ethics review committee at 25/4/2020 with serial number 27/2020.

Search Strategy and Articles Selection (Table 2):

Literature search was performed through PubMed (Medline), Google scholar, Embase (ELSEVIER), Science Direct (ELSEVIER), and Egyptian Knowledge Bank (EKL) databases using the following terms in every possible combination of keywords:

- (1) Failed adjustable gastric banding, LAGB [OR].
- (2) Failed VBG [OR].
- (3) Failed sleeve gastrectomy, LSG [AND].
- (4) Revisional [OR] conversion [AND].
- (5) RYGB [OR].
- (6) (5) Sleeve gastrectomy, SG [OR].
- (7) MGB-OAGB.

The PubMed search yielded 230 studies; 146 studies were relevant by abstract. However, only 29 studies were included according to inclusion criteria. Searching through Google Scholar revealed 263 studies, and 21 studies were checked by abstract; however, finally only three studies were included after removing the duplicates. Embase, Science Direct, and EKL yielded 45, 41, and 49 studies, respectively, with only two papers finally included according to inclusion criteria (one for Embase and another for EKL). The detailed search results are illustrated in Table 1.

Table 1	Search	roculte	through	different	databases
Table I	Search	results	unrougn	amerent	databases

		•	
Literature searched	Total number of revealed studies	Number of studies (by abstract)	Number of final included/relevant studies
PubMed	230	146	29
Google Scholar	263	21	3
Embase	45	2	1
Science Direct	41	1	-
EKL	49	1	1
Total	628	171	34

Inclusion criteria

Original articles fulfilled the following criteria for inclusion:

- (1) Written in the English language.
- (2) Published from 2009 to 2020.
- (3) Conducted on human participants.
- (4) Follow-up duration of 6, 12, to 48 months.
- (5) Reporting outcomes of LRYGB or LSG performed after failed restrictive bariatric surgeries on obese patients.
- (6) Outcomes
 - (a) Primary outcomes: decreased BMI, and extra weight loss percentage (% EWL) [(preoperative weight-current weight)/ (preoperative weight-ideal weight)×100] [10].
 - (b) Secondary outcomes: surgical complications, length of hospital stay, and operation time.

Exclusion criteria

The following were the exclusion criteria:

- (1) Follow-up duration less than 6 months.
- (2) Studies written in languages other than English.

Evaluation of articles

The articles were evaluated for the following:

- (1) Relevancy.
- (2) Quality of journals through the following:
 - (a) Impact factor: the impact factor is calculated by dividing the number of citations in the journal citation records in year by the total number of articles published in the two previous years. An impact factor of 1.0 means that, on average, the articles published 1 or 2 years ago have been cited one time.
 - (b) Scopus quartile: a quartile in Scopus is a category of scientific journals that show their credibility. The quartile reflects the demand for the journal by the scientific community. Accordingly, there are the least and most cited journals. Q_1 means highly demandable journal.
 - (c) SCImago Journal Ranking (SJR): Scopus journal metrics use advanced rating systems for both authors and publications, in particular, an indicator such as SJR. SJR is a much more difficult indicator than the impact factor, which takes into account (along with citation) the degree of authority of the journals referring to a given journal, as well as the proximity of their topics.

Table 2 Study characteristics

					D		Dura	ation	Conv	ersion
Study		No RYGB	No MGB	No SG	Study design	Country	From	То	From	То
LAGB stu	udies (24 studies)									
1 B	Bhaskar <i>et al</i> . [12]	15	-	26	Retrospective	India	2007	2010	LAGB	RYGB and SG
2 A	Abu-ghazla <i>et al</i> [13]	18	-	18	Retrospective	Israel	2006	2010	LAGB	RYGB and SG
3 T	Tran <i>et al</i> . [14]	53	-	8	Retrospective	USA	2006	2013	LAGB	RYGB and SG
4 S	Shimizu <i>et al</i> . [15]	9	-	2	Retrospective	USA	2004	2011	LAGB and VBG and SG	RYGB and SG
5 N	<i>l</i> loon <i>et al</i> . [16]	41	-	13	Retrospective	USA	2008	2012	LAGB	RYGB and SG
6 K	Khoursheed et al. [17]	53	-	42	Retrospective	Kuwait	2005	2012	LAGB	RYGB and SG
7 N	Marin-Perez et al. [18]	39	-	20	Prospective	USA	2005	2012	LAGB	RYGB and SG
8 S	Stefanidis et al. [19]	25	-	23	Prospective	USA	2005	2013	LAGB	RYGB and SG
9 C	Carr <i>et al</i> . [20]	64	-	25	Retrospective	UK	2006	2012	LAGB	RYGB and SG
10 C	Carandina <i>et al</i> . [21]	74	-	34	Retrospective	France	2007	2012	LAGB	RYGB and SG
11 G	Gonzalez-Heredia et al. [22]	12	-	26	Retrospective	USA	2008	2014	LAGB	RYGB and SG
12 C	Castro et al. [23]	71	-	17	Retrospective	Portugal	2007	2014	LAGB	RYGB and SG
13 A	Angrisani <i>et al</i> . [24]	24	-	27	Retrospective	Italy	2007	2011	LAGB	RYGB and SG
14 N	lgiam <i>et al</i> . [25]	9	-	9	Prospective	Singapore	2003	2013	LAGB	RYGB and SG
15 Y	/eung et al. [26]	32	-	72	Retrospective	USA	2009	2014	LAGB	RYGB and SG
16 P	Pawan <i>et al.</i> [27]	9	26	17	Retrospective	Taiwan	2002	2011	LAGB	RYGB and SG and MGB
17 Ja	lanik <i>et al</i> . [28]	1354	-	1354	Prospective	USA	2015	2017	LAGB	RYGB and SG
18 C	Creange <i>et al</i> . [29]	192	-	283	Retrospective	USA	2003	2015	LAGB	RYGB and SG
19 A	Avsar <i>et al</i> . [30]	29	-	20	Prospective	Turkey	2012	2018	LAGB	RYGB and SG
20 K	Khan <i>et al.</i> [31]	113	-	28	Prospective	UK	2009	2014	LAGB	RYGB and SG
21 R	Rafols et al. [32]	905	191	123	Retrospective	Multicenter	2002	2017	LAGB	RYGB and SG and MGB
22 A	Almalki <i>et al</i> . [33]	35	81	-	Retrospective	Taiwan	2001	2015	LAGB and VBG	RYGB and MGE
23 G	Qiu <i>et al</i> . [34]	12	-	2	Retrospective	USA	2012	2015	LAGB and LSG	RYGB and SG
24 Ja	lanik <i>et al</i> . [35]	5043	-	9192	Retrospective	USA	2015	2018	LAGB	RYGB and SG
VBG stuc	dies (3 studies)									
25 S	Salama and Sabry et al. [4]	21	39	-	RCT	Egypt	2013	2015	VBG	RYGB and MGE
26 va	an Wezenbeek et al. [36]	115	-	16	Retrospective	Netherlands	2009	2015	VBG	RYGB and SG
27 N	levo et al. [37]	33	21	-	Retrospective	Israel	2008	2018	VBG	RYGB and MGE
LSG stud	dies (7 studies)									
28 A	Alsabah <i>et al</i> . [38]	12	-	23	Retrospective	Kuwait	2009	2012	LSG	RYGB and SG
29 Y	'ilmaz <i>et al</i> . [39]	9	-	23	Retrospective	Turkey	2009	2016	LSG	RYGB and SG
30 G	Qiu <i>et al</i> . [34]	4	-	1	Retrospective	USA	2012	2015	LAGB and LSG	RYGB and SG
31 C	Chiappetta <i>et al</i> . [40]	21	34	-	Retrospective	Germany	2014	2016	LSG	RYGB and MGE
32 A	Antonopulos et al. [41]	83	-	61	Retrospective	France	2010	2017	LSG	RYGB and SG
33 P	Poublon et al. [42]	306	185	-	Retrospective	Netherlands	2012	2017	LAGB and LSG	RYGB and MGE
34 A	Al-Sabah <i>et al</i> . [43]	46	-	38	Retrospective	Kuwait	2008	2019	LSG	RYGB and SG
S	Sum	8881	577	11 543						

LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RCT, randomized clinical trial; RYGB, Roux-en-Y gastric bypass; SG, sleeve gasterectomy; VBG, vertical band gastroplasty.

Data extraction

For each eligible study, data were extracted by the researchers two times one week in between relative to the following:

- (1) Number of patients.
- (2) Mean age and/SD.
- (3) Sex.
- (4) Preoperative BMI.
- (5) Time to revision of the primary operation.
- (6) BMI after 6, 12, 24, 36, and 48 months.

- (7) Perioperative parameters and outcomes:
 - (a) Mean operative time.
 - (b) Length of hospital stay.
 - (c) Intraoperative and postoperative complications.
 - (d) %EWL [(preoperative weight-current weight)/(preoperative weight-ideal weight)× 100] [10].

Current weight means the weight of patient at the time of assessment.

Statistical analysis

All data were analyzed using REVMAN software using the random effect model. In case of SD not reported in presence of range, it will be calculated by dividing range by 4 [11].

Duration

Figure 1

The study was performed for 1 year after approval of the research ethics committee.

Ethical consideration

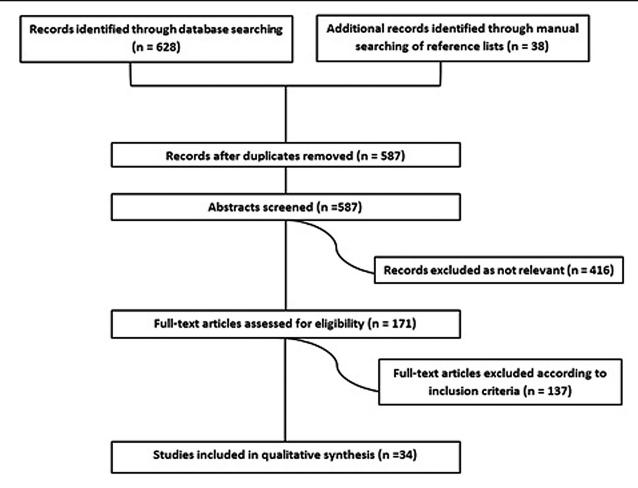
The protocol was submitted for approval by the Faculty of Medicine, Helwan University, research ethics review committee.

Approval date and serial number

The protocol was approved from Faculty of Medicine, Helwan University, research ethics review committee at 25/4/2020 with serial number 27/2020.

Meta-analysis interpretation

(1) I^2 is the index to quantify the dispersion of effect sizes in a meta-analysis. I^2 values of 25, 50, and 75%, correspond to small, moderate, and large amounts of heterogeneity.

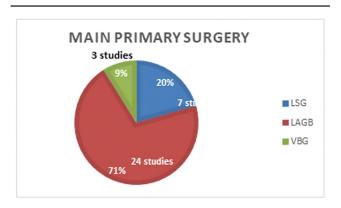

Overall effect: the P value from the Z test to examine whether the pooled estimate of effect is statistically significant.

Results

As shown in Fig. 1, the search yielded 628 studies using the study keywords; however, 587 items were included after excluding duplicates. After scanning the title and/ or abstract, 401 studies were eliminated or nonrelevant and 15 were eliminated because they were reviews, comments, or case reports (total equal 416 studies). After a full-length paper examination, 132 studies were eliminated, and five research studies were eliminated due to language issues (total equal 137 studies). Thus, 34 studies were finally included in the analysis.

Studies characteristics

The included studies comparing revisional bariatric procedures were 34 studies, involving 21 001 patients, where of 8881 cases underwent RYGB, 11 543 cases had LSG, and 577 cases underwent MGB. Major characteristics of included studies are shown in Table 2.

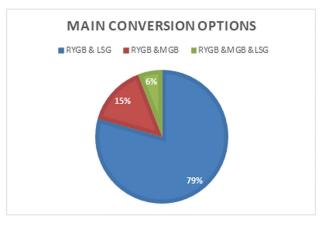


PRISMA flow diagram. LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; VBG, vertical band gastroplasty.

As shown in Fig. 2, the main primary bariatric procedures were represented by VBG in three studies, LAGB in 24 studies, and in seven studies, it was represented by LSG.

Regarding the main conversion surgical procedure (Fig. 3), comparison of RYGB with LSG was done

Figure 2

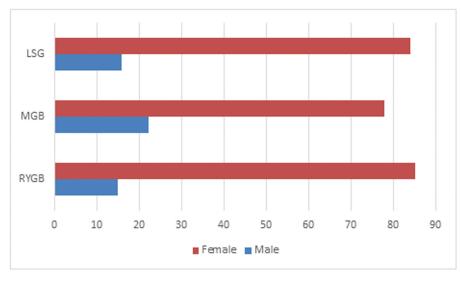


Main primary operation in the included 34 studies. LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

Table 3 Different age groups of the included studies

in 27 studies, whereas comparison of RYGB with MGB was done in five studies, and RYGB was compared with MGB and LSG in just two papers.

Figure 3



Main conversion options in the included 34 studies. LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Rouxen-Y gastric bypass.

		RYG	B age	MGB	age	SG age	
No	Study	Mean	SD	Mean	SD	Mean	SD
LAGB (1	17 studies)						
1	Bhaskar <i>et al.</i> [12]	38	8.5			32	13
2	Abu-ghazla et al. [13]	43.7	13.2			38.6	11.3
5	Moon <i>et al</i> . [16]	43.7	9.8			40.8	13
6	Khoursheed et al. [17]	39	8.3			35.6	10.4
7	Marin-Perez et al. [18]	49	14			44	17
8	Stefanidis et al. [19]	47.8				42	
9	Carr et al. [20]	47.7	10.01			49.8	10.65
10	Carandina et al. [21]	42.1	9.8			42.4	12.1
11	Gonzalez-Heredia et al. [22]	33.9	7.9			38.6	14.7
12	Castro et al. [23]	44.9	9.8			48.4	12.1
13	Angrisani et al. [24]	34.9	9.4			37.5	10.8
15	Yeung <i>et al</i> . [26]	50.7	-			44.9	-
16	Pawan <i>et al</i> . [27]	40.6	11.5	35.9	8.8	42.8	7.9
17	Janik <i>et al</i> . [35]	44.5	9.3			44.6	9.4
18	Creange et al. [29]	44.8	12.2			43.2	11.7
21	Rafols et al. [32]	37.2	10.1	40.6	11.2	41	11.4
24	Janik <i>et al.</i> [35]	48.65	10.78			48.27	10.84
			VBG (2 stu	dies)			
26	van Wezenbeek et al. [36]	43	8.9			41.6	11.4
27	Nevo et al. [37]	50	8.4	43.2	12.1		
			LSG (5 stud	dies)			
29	Yilmaz <i>et al</i> . [39]	37.3	9.1			36.1	12.2
31	Chiappetta et al. [40]	46.5	11.1	46.1	10.8		
32	Antonopulos et al. [41]	47	10			48	10.25
33	Poublon et al. [42]	48	9.6	46	9		
34	Al-Sabah <i>et al</i> . [43]	37	10.7			37.1	8.9
	Mean	43.33	4.92	42.36	3.82	41.77	4.59

LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

Sex distribution in the included studies.

Table 4 Different sex groups of the included studies

		R	YGB		SG	MGB	
No	Study	Male	Female	Male	Female	Male	Female
LAGB (18 studies)						
1	Bhaskar et al. [12]	2	13	4	22	_	-
2	Abu-ghazla et al. [13]	8	10	4	14	_	-
5	Moon <i>et al.</i> [16]	5	49	4	37	_	-
6	Khoursheed et al. [17]	7	46	6	36	_	-
7	Marin-Perez et al. [18]	6	33	5	15	_	-
9	Carr <i>et al</i> . [20]	13	51	8	17	_	-
10	Carandina et al. [21]	5	69	3	31	_	_
12	Castro et al. [23]	7	64	5	12		
13	Angrisani et al. [24]	4	21	4	22	_	_
15	Yeung et al. [26]	19	13	15	57	_	_
16	Pawan et al. [27]	2	7	7	10	10	16
17	Janik <i>et al</i> . [35]	52	1302	52	1302	_	_
18	Creange et al. [29]	23	169	79	204	_	_
19	Avsar <i>et al</i> . [30]	40	96	39	97	_	_
21	Rafols et al. [32]	156	741	29	94	20	171
22	Almalki <i>et al.</i> [33]	12	23	0	0	21	60
24	Janik <i>et al</i> . [35]	730	4313	1566	7626		
VBG (3	studies)						
25	Salama and Sabry [4]	6	24			6	24
26	van Wezenbeek et al. [36]	9	96	3	13		
27	Nevo et al. [37]	9	24			5	16
LSG (5	studies)						
29	Yilmaz <i>et al</i> . [39]	3	6	8	15		
31	Chiappetta et al. [40]	2	19			11	23
32	Antonopulos et al. [41]	14	69	13	48		
33	Poublon <i>et al</i> . [42]	48	258	0	0	46	139
34	Al-Sabah <i>et al.</i> [43]	8	38	7	31		
	Sum	1190	7554	1861	9703	119	449

LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

The overall mean±SD age in the included studies (Table 3) was 43.33 ± 4.92 years for patients who had RYGB, 42.36 ± 3.82 years for MGB patients, and 41.77 ± 4.59 years for LSG patients, with no significant difference (*P*>0.05) between the mean ages in each group (Table 3).

The average number of female patients (Fig. 4) was 7554 (85.06%) in RYGB patients, 9703 (84.06%) in LSG patients, and 449 (77.82%) in MGB patients, with no significant difference (P>0.05) between mean sex percentages in each group (Tables 4 and 5,).

In RYGB patients, the mean pre-revisional BMI (Table 6) was $41.59\pm7.11 \text{ kg/m}^2$, $42\pm3.55 \text{ kg/m}^2$ for LSG patients, and $38.58\pm11.48 \text{ kg/m}^2$ for MGB group, with a significant difference (Table 6) in the

RYGB group (P<0.05) and no significant difference in other groups (P>0.05).

The average duration between the primary and conversion operations (Table 10) was 54.68 ± 18.81 and 52.09 ± 18.04 months for bypasses and LSG patients, respectively. There was no significant difference (Table 10) between the different conversion groups (P>0.05) (Tables 7–12).

Table 5 Univariate analysis of age

	F Significance (P v			
Age of RYGB group	0.411	0.668		
Age of MGB group	5.586	0.152		
Age of LSG group	0.140	0.870		

LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass. *One-way analysis of variance; significant if *P* value less than 0.05.

Table 6	Different	preconversion	BMI grou	ups of the	included studies
---------	-----------	---------------	----------	------------	------------------

			ersion BMI B group		rsion BMI group	Preconversion BMI in MGB group	
No	Study	Mean	SD	Mean	SD	Mean	SD
LAGB (22	2 studies)						
1	Bhaskar <i>et al</i> . [12]	38	4.65	36	5		
2	Abu-ghazla <i>et al.</i> [13]	41.6	5.3	40	9.6		
5	Moon <i>et al</i> . [16]	41.8	6.2	39	6.6		
6	Khoursheed et al. [17]	43.2		38.5			
7	Marin-Perez et al. [18]	42	6	39	6		
8	Stefanidis et al. [19]	40		39.7			
9	Carr et al. [20]	49.5	6.62	52.7	12.11		
10	Carandina et al. [21]	45.6	6.2	48.2	6.5		
11	Gonzalez-Heredia et al. [22]	44.6	13.6	48.6	12.8		
12	Castro et al. [23]	45.1	6.3	42.2	6.58		
13	Angrisani <i>et al</i> . [24]	43.2	4.8	39.7	8.4		
14	Ngiam <i>et al</i> . [25]	34.9	14.6	35.2	19		
15	Yeung <i>et al.</i> [26]	41.41		39.63			
16	Pawan <i>et al</i> . [27]	36.9	6.8	33.8	7.3	39.3	8.9
17	Janik <i>et al.</i> [28]	40.6	5.2	40.6	5.2		
18	Creange <i>et al</i> . [29]	44	7.2	43	7.6		
19	Avsar <i>et al</i> . [30]	45.1	8.6	41.4	5.8		
20	Khan <i>et al.</i> [31]	47.3	0.8	46.8	2.2		
21	Rafols et al. [32]	40.3	6.9	41.4	8.8	39.8	6.9
22	Almalki <i>et al.</i> [33]	37.1	8.4			37.8	9.6
23	Qiu <i>et al.</i> [34]	42.5		52			
24	Janik <i>et al.</i> [35]	43.35	6.81	42.03	6.85		
VBG (2 s	studies)						
25	Salama and Sabry [4]	26.5	39.79			26.5	39.79
27	Nevo et al. [37]	41.4	7.8			39.7	5.9
LSG (6 s	tudies)						
28	Alsabah <i>et al.</i> [38]	48.3		42			
30	Qiu <i>et al.</i> [34]	42.3		46			
31	Chiappetta et al. [40]	36.6	6.9			45.7	8
32	Antonopulos et al. [41]	41.7	10.22	40.5	6.08		
33	Poublon et al. [42]	40.2	4			40.9	4.5
34	Al-Sabah et al. [43]	42.67	6.85	42	6		
	Mean	41.59	7.11	42	3.55	38.58	11.48

LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

		RY	GB	SG	
No	Study	Mean	SD	Mean	SD
LAGB (7 stu	dies)				
1	Bhaskar et al. [12]	34	20	36	20
5	Moon <i>et al</i> . [16]	30.6	13.1	39.5	13.7
7	Marin-Perez et al. [18]	50	35	31	23
10	Carandina et al. [21]	82.5	40.5	76.2	61.5
11	Gonzalez-Heredia et al. [22]	73.32	27.9	59.7	27.9
13	Angrisani <i>et al</i> . [24]	82.5	36.8	75.7	42.3
15	Yeung et al. [26]	63.6		72	
VBG (one st	udy)				
26	van Wezenbeek et al. [36]	47.8	34.8	30.7	26.5
LSG (2 stud	ies)				
31	Chiappetta et al. [40]	33.3	22.8		
34	Al-Sabah et al. [43]	49.2	22.8	48	19.2
	Mean	54.68	18.81	52.09	18.04

LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

Table 8 Univariate analysis of total percentage of females/ male

	F	Significance (P value)*
RYGB group	0.398	0.676
LSG group	0.165	0.849
MGB group	0.559	0.611

LSG, laparoscopic sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass. *One-way analysis of variance; significant if *P* value less than 0.05.

Table 9 Univariate analysis of preconversion BMI

	F	Significance (P value)*
Preconversion BMI for RYGB group	3.837	0.034
Preconversion BMI for SG group	0.080	0.780
Preconversion BMI for MGB group	2.084	0.240

SG, sleeve gastrectomy; MGB, mini gastric bypass; RYGB, Rouxen-Y gastric bypass. *One-way analysis of variance; significant if *P* value less than 0.05.

Indication for conversion

About the indication for revisional procedure (Table 11), there were three main indications for conversion: inadequate weight loss (mean incidence=45.8%), weight regain (mean incidence=42.10%), and gastroesophageal reflux disease (GERD) (mean incidence=11%).

Quality assessment for the included studies

The assessment for studies' quality (Fig. 5) was done according to the impact factor, scientific journal ranking, and Scopus quartile. The majority of the studies (31 studies, 91.18%) were of high quality (Q1, impact factor>1, and SJR>1).

Table 10 Univariate analysis of time for conversion (months)

	F	Significance (P value)*
Time to conversion for RYGB	0.673	0.540
Time to conversion for SG	0.720	0.525

RYGB, Roux-en-Y gastric bypass; SG, sleeve gasterectomy. *One-way analysis of variance; significant if *P* value less than 0.05.

Meta-analysis

BMI decreased after conversions

(1) Comparison between gastric bypass (RYGB and MGB) and SG (Fig. 6).

(a) 3–6 months (short term) after conversion:

In seven studies, comparing the short-term BMI results between gastric bypass and SG revealed no significant difference, with significantly high heterogeneity percent ($I^2=94\%$, P<0.00001) and overall effect of 0.67 (Table 13).

(1) 12 months after conversion:

In 13 studies comparing the 12 months postconversion BMI results between gastric bypass and SG there was no significant difference, with significantly high heterogeneity percent (I^2 =84%, P<0.00001) and overall effect of 0.25.

- (1) Long term postconversion BMI decrease:
 - (1) 24 months after conversion:

In three studies comparing the 24-month postconversion BMI results between gastric bypass and SG, there was no significant difference, with significantly high heterogeneity percent ($I^2=97\%$, P<0.00001) and overall effect of 1.21.

2 Abu-ghazla et al. [13] 36 22.2% 40% Symptomatic intolerance 33 3 Tran et al. [14] 61 17% 5% Dysphagia 52 4 Shimizu et al. [15] 11 5 Others 22 4 Shimizu et al. [16] 54 52.8% 52.8% 52.8% 6 Khoursheed et al.[17] 95 94.74% 52.8% 52.8% 7 Marin-Perez et al. [18] 59 74.58% 3.39% 22.3% 9 Carr et al. [20] 89 51.7% Band slippage 6 9 Carr et al. [21] 108 72.2% 7.4% 20 10 Carandina et al. [21] 108 72.2% 7.4% Band slippage 5 [22] Band slippage 5 11 Band slippage 3 12 Castr et al. [23] 88 73.2% 7.8% Band slippage 3 13 Angrisani et al.[24] 51 64.7%					Indic	ations for co	onversion		
2 Abu-ghazia et al. [13] 36 22.2% 40% Symptomatic infilterance 37 infilterance 3 Tran et al. [14] 61 17% 5% Dysphagia 5 4 Shimizu et al. [15] 11 5% Dysphagia 5 6 Khoursheed et al. [16] 54 5.26% 5.26% 7 Marin-Peroz et al. [18] 59 74.58% 3.39% 22.3% 8 Stefanicis et al. [19] 48 8 5.26% 7.4% 22.3% 9 Carr et al. [20] 89 51.7% Band slippage 6 9 Carr et al. [21] 108 72.2% 7.4% 20 10 Carandina et al. [21] 108 72.2% 7.4% 20 11 Gonzalez-Hereclia et al. 38 73.2% Band slippage 5 12 Castr ot al. [23] 88 73.2% 7.4% Band slippage 28 14 Ngiam et al. [27] 52 77.4% 7.5% <	No	Study		1 0	•	GERD	Others		
3 Tran et al. [14] 61 17% 5% Dysphagia 5 4 Shimizu et al. [15] 11 5 Moon et al. [16] 54 6 5 Moon et al. [16] 54 54 54 6 6 Knoursheed et al. [17] 95 94.74% 3.39% 52.6% 7 Main-Perez et al. [18] 59 74.58% 3.39% 22.3% 8 Stefanidis et al. [19] 48 74.56% Band slippage 6 9 Cart et al. [20] 89 51.7% Band slippage 5 10 Carandina et al. [21] 108 72.2% 7.4% 20 11 Gonzalez-Heredia et al. 38 23.8% Band slippage 3 12 Castro et al. [23] 88 73.2% Band complications 12 12 Castro et al. [26] 104 71.15% Band complications 27 14 Ngiam et al. [26] 104 71.15% Band complications 55	1	Bhaskar et al. [12]	41	73.17%		4.88%	21.95%	, D	
4 Shimizu et al. [15] 11 Others 2 4 Shimizu et al. [15] 11	2	Abu-ghazla et al. [13]	36	22.2%	40%		, , , , , , , , , , , , , , , , , , ,	37	.8%
4 Shimizu et al. [15] 11 5 Moon et al. [16] 54 6 Khoursheed et al. [17] 95 94.74% 5.26% 7 Marin-Perez et al. [18] 59 74.58% 3.39% 22.3% 8 Stefanidis et al. [19] 48	3	Tran <i>et al.</i> [14]	61	17%		5%			5% 8%
6 Khoursheed et al. [17] 95 94.74% 5.26% 7 Marin-Perez et al. [18] 59 7.45% 3.39% 22.3% 9 Carre al. [20] 69 51.7% Band slippage 6 9 Carradina et al. [21] 108 72.2% 7.4% 22 10 Carandina et al. [21] 108 72.2% 7.4% 22 12 Castro et al. [23] 88 73.2% Band complications 14 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18 Band slippage 3 28 15 Yeung et al. [26] 104 71.15% Achalasia like 11 17 Janik et al., 2017 [28] 2708 Eand complications 52 18 Kearg et al. [29] 475 Eand complications 52 13 Ansar et al. [21] 141 Salok et al. [32] 121 Sand slippage 13	4	Shimizu <i>et al</i> . [15]	11					_	- / -
7 Marin-Perez et al. [18] 59 74.58% 3.39% 22.3% 8 Stefanidis et al. [19] 48 Band sippage 6 9 Carr et al. [20] 89 51.7% Band sippage 6 10 Carandina et al. [21] 108 72.2% 7.4% 20 11 Gonzalez-Heredia et al. 38 23.8% Band sippage 55 [22] Band sippage 51 64.7% 7.4% 20 12 Castro et al. [23] 88 73.2% Band sippage 32 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [26] 104 71.15% Band problems 28 16 Pawan et al. [27] 52 77.4% 7.5% Achalasia like 11 17 Janik et al., 2017 [28] 2708 Eand complications 55 18 Creange et al. [29] 475 Band sippage 16 24 Janik et al. [31] 141 Band complications 55 25	5	Moon et al. [16]	54						
8 Stefanidis et al. [20] 89 51.7% Band slippage 6 9 Car et al. [20] 89 51.7% Band complications 44 10 Carandina et al. [21] 108 72.2% 7.4% 22 11 Gonzalez-Heredia et al. 38 23.8% Band slippage 55 12 Castro et al. [23] 88 73.2% Band slippage 32 13 Angrisani et al. [25] 18 Band slippage 32 14 Ngiam et al. [25] 18 Band complications 27 15 Yeung et al. [26] 104 71.15% Band problems 28 16 Pawan et al. [27] 52 77.4% 7.5% Achalasia like 11 17 Janik et al., 2017 [28] 2708 Eand complications 56 18 Pawan et al. [31] 141 Symptoms 51 19 Avsar et al. [32] 1219 Eand complications 56 20 Khan et al. [33] 116 31% 50.9% 18.5% Achalasia 13	6	Khoursheed et al.[17]	95	94.74%			5.26%		
9 Carr et al. [20] 89 51.7% Band slippage 6 10 Carandina et al. [21] 108 72.2% 7.4% 22 11 Gonzalez-Heredia et al. 38 23.8% Band slippage 55 [22] Band slippage 53 16 Band slippage 53 12 Castro et al. [23] 88 73.2% Band slippage 53 13 Angrisani et al.[24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18 9 33 Andrispage 28 15 Yeung et al. [26] 104 71.15% Band poblems 28 17 Janik et al., 2017 [28] 2708 2.7% Band slippage 10 18 Creange et al. [29] 475 5 5 5 5 19 Avsar et al. [30] 141 50.9% 18.5% Achalasia 13 12 Inalik et al.[31] 141 5 3ank et al.[33] 116 31% 50.9% 3.05% 0 1	7	Marin-Perez et al. [18]	59	74.58%		3.39%	22.3%		
Image: Second	8	Stefanidis et al. [19]	48						
10 Carandina et al. [21] 108 72.2% 7.4% 20 11 Gonzalez-Heredia et al. 38 23.8% Band slippage 55 12 Castro et al. [23] 88 73.2% Band complications 16 12 Castro et al. [23] 88 73.2% Band slippage 33 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18	9	Carr et al. [20]	89	51.7%				-	7% .6%
11 Gonzalez-Heredia et al. 38 23.8% Band slippage 56 [2] Band complications 10 12 Castro et al. [23] 88 73.2% Band slippage 53 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18	10	Carandina et al. [21]	108	72.2%			•		.4%
Image: Section of al. [23] 88 73.2% Band complications 16 12 Castro et al. [23] 88 73.2% Band slippage 33 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18		Gonzalez-Heredia et al.	38	23.8%			Band slippage		.5%
12 Castro et al. [23] 88 73.2% Band stippage 3 13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18							Band complications	16	.7%
13 Angrisani et al. [24] 51 64.7% 7.84% Band complications 27 14 Ngiam et al. [25] 18 11	12	Castro et al. [23]	88	73.2%				3	4%
14 Ngiam et al. [25] 18 15 Yeung et al. [26] 104 71.15% Band problems 28 16 Pawan et al. [27] 52 77.4% 7.5% Achalasia like 11 17 Janik et al., 2017 [28] 2708 symptoms 18 18 Creange et al. [29] 475 symptoms 18 19 Avsar et al. [30] 49 23% 2.7% Band slippage 18 20 Khan et al. [31] 141 Band complications 55 20 Khan et al. [32] 1219 Band complications 55 21 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 10 23 Qiu et al. [34] 14 4 4 4.1[35] 14235 35 32 30.5% 3.05% </td <td>13</td> <td></td> <td>51</td> <td>64.7%</td> <td>7.84%</td> <td></td> <td></td> <td>27.</td> <td>46%</td>	13		51	64.7%	7.84%			27.	46%
16 Pawan et al. [27] 52 77.4% 7.5% Achalasia like symptoms 1 17 Janik et al., 2017 [28] 2708	14		18						
16 Pawan et al. [27] 52 77.4% 7.5% Achalasia like symptoms 1 17 Janik et al., 2017 [28] 2708	15	Yeung et al. [26]	104	71.15%			Band problems	28.	85%
17 Janik et al., 2017 [28] 2708 18 Creange et al. [29] 475 19 Avsar et al. [30] 49 23% 2.7% Band slippage 18 20 Khan et al. [31] 141 Band complications 55 20 Khan et al. [32] 1219 Band slippage 18 22 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 13 23 Qiu et al. [34] 14	16		52	77.4%	7.5%		Achalasia like	11	.3%
19 Avsar et al. [30] 49 23% 2.7% Band slippage Band complications 18 58 20 Khan et al. [31] 141 141 18 131 1219 18 18.5% Achalasia 131 131 22 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 131 131 23 Qiu et al. [34] 14	17	Janik <i>et al., 2017</i> [28]	2708						
20 Khan et al. [31] 141 141 21 Rafols et al. [32] 1219 1219 22 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 13 23 Qiu et al. [34] 14 14 14 14 14 14 24 Janik et al. [35] 14235 14235 14 1	18	Creange et al. [29]	475						
20 Khan et al. [31] 141 21 Rafols et al. [32] 1219 22 Almalki et al.[33] 116 31% 50.9% 18.5% Achalasia 13 23 Qiu et al. [34] 14 14 14 14 14 24 Janik et al. [35] 14235 14235 14 14 14 25 Salama and Sabry [4] 60 70% 305% <td>19</td> <td>Avsar <i>et al</i>. [30]</td> <td>49</td> <td>23%</td> <td></td> <td>2.7%</td> <td></td> <td></td> <td>.9% .4%</td>	19	Avsar <i>et al</i> . [30]	49	23%		2.7%			.9% .4%
21 Rafols et al. [32] 1219 22 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 13 23 Qiu et al. [34] 14 14 14 14 14 14 24 Janik et al. [35] 14235 70% 32 32 32 32 32 305%	20	Khan <i>et al</i> . [31]	141				·····		
22 Almalki et al. [33] 116 31% 50.9% 18.5% Achalasia 13 23 Qiu et al. [34] 14 14 14 14 14 24 Janik et al. [35] 14235 14235 14 14 15 25 Salama and Sabry [4] 60 70% 33 305% 305% 305% 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 305%	21		1219						
23 Qiu et al. [34] 14 24 Janik et al. [35] 14235 25 Salama and Sabry [4] 60 70% 3 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 3 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 0 27 Nevo et al. [37] 54 RY 81.9% Dysphagia and vomiting RY 28 Alsabah et al. [38] 35 MGB 95.3% MGB 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 18.8% 30 Qiu et al. [41] 5 31 Chiappetta et al. [40] 55 32 Antonopulos et al. [41] 144	22		116	31%	50.9%	18.5%	Achalasia	13	.9%
24 Janik et al. [35] 14235 25 Salama and Sabry [4] 60 70% 3 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 3 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 3 27 Nevo et al. [37] 54 RY 81.9% Dysphagia and vomiting RY 28 Alsabah et al. [38] 35 MGB 95.3% MGB 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 30 Qiu et al. [34] 5 55 32 Antonopulos et al. [41] 144									
25 Salama and Sabry [4] 60 70% 3 26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 3 27 Nevo et al. [37] 54 RY 81.9% Dysphagia and vomiting RY 28 Alsabah et al. [38] 35 MGB 95.3% MGB 28 Alsabah et al. [38] 35 MGB MGB 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 30 Qiu et al. [40] 55 1 1 14	24		14235						
26 van Wezenbeek et al. 131 RY 19.08% 32.06% 3.05% 26 [36] SG 3.05% 3.05% 0 27 Nevo et al. [37] 54 RY 81.9% Dysphagia and vomiting RY 28 Alsabah et al. [38] 35 MGB 95.3% MGB 28 Alsabah et al. [38] 35 MGB 95.3% MGB 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 18.8% 30 Qiu et al. [34] 5 55 14.40 55 14.40 32 Antonopulos et al. [41] 144 5 56.2% 18.8%	25		60		70%			3	0%
27 Nevo et al. [37] 54 SG 3.05% 3.05% 0 28 Alsabah et al. [38] 35 MGB 95.3% MGB 28 Alsabah et al. [38] 35 MGB MGB 30 Qiu et al. [34] 5 56.2% 18.8% 14 31 Chiappetta et al. [40] 55 14 14 14	26	van Wezenbeek et al.	131	RY	19.08%	32.06%	3.05%		
MGB 95.3% MGB 28 Alsabah et al. [38] 35 MGB 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 30 Qiu et al. [34] 5 55 18.8% 18.8% 31 Chiappetta et al. [40] 55 55 18.8% 144				SG	3.05%	3.05%	0		
28 Alsabah et al. [38] 35 29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 30 Qiu et al. [34] 5 5 5 31 Chiappetta et al. [40] 55 5 5 32 Antonopulos et al. [41] 144 5	27	Nevo et al. [37]	54		81.9%			RY	18.1%
29 Yilmaz et al. [39] 32 25% 56.2% 18.8% 30 Qiu et al. [34] 5 5 31 Chiappetta et al. [40] 55 55 32 Antonopulos et al. [41] 144				MGB	95.3%		-	MGB	4.7%
30 Qiu et al. [34] 5 31 Chiappetta et al. [40] 55 32 Antonopulos et al. [41] 144	28	Alsabah et al. [38]	35						
30 Qiu et al. [34] 5 31 Chiappetta et al. [40] 55 32 Antonopulos et al. [41] 144	29	Yilmaz et al. [39]	32	25%	56.2%	18.8%			
31 Chiappetta et al. [40] 55 32 Antonopulos et al. [41] 144	30								
32 Antonopulos <i>et al.</i> [41] 144	31		55						
	32								
33 Poublon et al. [42] 491 RY 18.13% 29.08% MGB 11.61% 21.38%	33	Poublon <i>et al</i> . [42]	491	RY	18.13% 11.61%	29.08% 21.38%			
34 Al-Sabah et al. [43] 84 10.6% 74.1% 12.9%	24	Al Sabab at al [49]	01						

GERD, gastroesophageal reflux disease; MGB, mini gastric bypass. On calculation of the percentages, it may be not equal to 100% because of the presence of common indications between the patients.

(1) 36 months after conversion:

(1) 48 months after conversion:

In three studies comparing the 36-month postconversion BMI results between gastric bypass and SG, there was no significant difference, with significantly high heterogeneity percent ($I^2=72\%$, P=0.03) and overall effect of 0.61.

In three studies comparing the 48-month postconversion BMI results between gastric bypass and SG, there was no significant difference, with significantly high heterogeneity percent ($I^2=87\%$, P=0.0005) and overall effect of 0.64.

Table 12 Quality	assessment for th	e included 34 studies
------------------	-------------------	-----------------------

No	Study	Journal	Impact factor	Scientific journal ranking (SJR)	Scopus quartile (Q)
LAGE	Studies (24 studies)				
1	Bhaskar et al. [12]	Asian Journal of Endoscopy Surgery	0.7	0.367	3
2	Abu-ghazla et al. [13]	Surgery for Obesity and Related Diseases	3.812	1.73	1
3	Tran <i>et al</i> . [14]	Surgical Endoscopy	3.149	1.457	1
4	Shimizu et al. [15]	Obesity Surgery	3.42	1.439	1
5	Moon <i>et al</i> . [16]	Surgery for Obesity and Related Diseases	3.812	1.73	1
6	Khoursheed et al. [17]	Surgical Endoscopy	3.149	1.457	1
7	Marin-Perez et al. [18]	Surgery for Obesity and Related Diseases	3.812	1.73	1
8	Stefanidis et al. [19]	Surgical Endoscopy	3.149	1.457	1
9	Carr et al. [20]	Surgery for Obesity and Related Diseases	3.812	1.73	1
10	Carandina et al. [21]	Surgery for Obesity and Related Diseases	3.812	1.73	1
11	Gonzalez-Heredia et al. [22]	Surgical Endoscopy	3.149	1.457	1
12	Castro et al. [23]	Acta Medica Portuguesa	0.628	0.191	3
13	Angrisani <i>et al.</i> [24]	Obesity Surgery	3.42	1.439	1
14	Ngiam <i>et al</i> . [25]	Obesity Surgery	3.42	1.439	1
15	Yeung <i>et al</i> . [26]	Surgical Endoscopy	3.149	1.457	1
16	Pawan <i>et al</i> . [27]	Obesity Surgery	3.42	1.439	1
17	Janik <i>et al</i> . [28]	Annals Of Surgery	10.13	4.15	1
18	Creange <i>et al</i> . [29]	Surgery for Obesity and Related Diseases	3.812	1.73	1
19	Avsar <i>et al.</i> [30]	Obesity Surgery	3.42	1.439	1
20	Khan <i>et al</i> . [31]	Surgery for Obesity and Related Diseases	3.812	1.73	1
21	Rafols et al. [32]	Surgery for Obesity and Related Diseases	3.812	1.73	1
22	Almalki <i>et al</i> . [33]	Obesity Surgery	3.42	1.439	1
23	Qiu <i>et al</i> . [34]	Obesity Surgery	3.42	1.439	1
24	Janik <i>et al</i> . [35]	Obesity Surgery	3.42	1.439	1
VBG	Studies (3 studies)				
25	Salama and Sabry [4]	Minimally Invasive Surgery	2.1	0.55	2
26	van Wezenbeek et al. [36]	World Journal of Gastrointestinal Surgery	2.582	1.168	1
27	Nevo et al. [37]	Obesity Surgery	3.42	1.439	1
LSG s	studies (7 studies)				
28	Alsabah et al. [38]	Obesity Surgery	3.42	1.439	1
29	Yilmaz <i>et al</i> . [39]	Obesity Surgery	3.42	1.439	1
30	Qiu et al. [34]	Obesity Surgery	3.42	1.439	1
31	Chiappetta et al. [40]	Obesity Surgery	3.42	1.439	1
32	Antonopulos et al. [41]	Obesity Surgery	3.42	1.439	1
33	Poublon et al. [42]	Obesity Surgery	3.42	1.439	1
34	Al-Sabah <i>et al</i> . [43]	Surgery for Obesity and Related Diseases	3.812	1.73	1

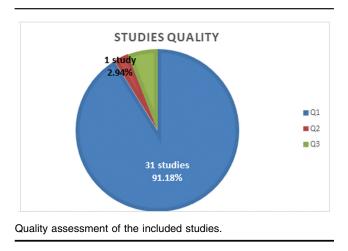
LAGB, laparoscopic adjustable gastric band; LSG, laparoscopic sleeve gastrectomy; VBG, vertical band gastroplasty.

(1) Overall analysis:

The overall analysis for postoperative BMI between gastric bypass and SG showed that there was no significant difference, with significantly high heterogeneity percent ($I^2=94\%$, P<0.00001) and overall effect of 1.25.

Table 14

Comparison between gastric bypasses (RYGB and mini gastric bypass)


(1) 3-6 months (Short term) after conversion:

In two studies comparing the short-term BMI results between RYGB and MGB, there was no significant difference, with significantly high heterogeneity percent (I^2 =83%, P=0.02), and overall effect of 1.08 (Fig. 7).

(1) 12 months after conversion:

In five studies comparing the 12-month postconversion BMI results between RYGB and MGB, there was no significant difference, with significantly moderate heterogeneity percent (I^2 =57%, P=0.05) and overall effect of 2.16.

(1) Long term postconversion BMI decrease(a) 24 months after conversion:

In two studies comparing the 24-month postconversion BMI results between RYGB and MGB, there was a significant difference favoring MGB, with nonsignificant no heterogeneity percent $(I^2=0\%, P=0.51)$ and overall effect of 3.65.

(1) 36 months postconversion:

In two studies comparing the 36-month postconversion BMI results between RYGB and MGB, there was a nonsignificant difference, with significantly high heterogeneity percent ($I^2=90\%$, P=0.002) and overall effect of 0.29.

(1) Overall analysis:

The overall analysis for postoperative BMI between RYGB and MGB showed that there was no significant difference, with significantly high heterogeneity percent (l^2 =89%, P<0.00001) and overall effect of 0.4.

Percentage of extra weight loss after conversions

 Comparison between gastric bypasses (RYGB and MGB) and SG (Fig. 8).

(a) 3–6 months (Short term) after conversion: In eight studies comparing the short-term % EWL results between gastric bypass and SG, there was no significant difference, with significantly high heterogeneity percent (I^2 =90%, P<0.00001) and overall effect of 0.54.

(1) 12 months after conversion:

In 15 studies comparing the 12-month postconversion % EWL results between gastric bypass and SG, there was no significant difference, with significantly high heterogeneity percent (I^2 =87%, P<0.00001) and overall effect of 0.10.

Long-term postconversion BMI decrease
 (1) 24 months after conversion:

In seven studies comparing the 24-month postconversion % EWL results between gastric bypass and SG, there was a significant difference favoring SG, with significantly moderate heterogeneity percent (I^2 =70%, P=0.003) and overall effect of 3.59.

(1) 36 months after conversion:

In four studies comparing the 36-month postconversion % EWL results between gastric bypass and SG, there was a significant difference favoring SG, with nonsignificant moderate heterogeneity percent (I^2 =44%, P=0.15) and overall effect of 3.43.

(1) 48 months after conversion:

In two studies comparing the 48-month postconversion % EWL results between gastric bypass and SG, there was a significant difference favoring SG, with nonsignificant low heterogeneity percent (I^2 =17%, P=0.27) and overall effect of 6.33.

(1) Overall analysis:

The overall analysis for postoperative % EWL between gastric bypass and SG showed that there was a significant difference favoring SG, with significantly high heterogeneity percent (I^2 =86%, P<0.00001) and overall effect of 2.79.

- Comparison between gastric bypasses (RYGB and MGB) (Fig. 9).
 - (a) 12 months after conversion:

In five studies comparing the 12-month postconversion % EWL results between RYGB and MGB, there was a significant difference favoring RYGB, with significantly high heterogeneity percent (I^2 =89%, P<0.00001) and overall effect of 3.27.

(1) 24 months after conversion:

In two studies comparing the 24-month postconversion % EWL results between RYGB and MGB, there was no significant difference, with significantly high heterogeneity percent (I^2 =89%, P=0.003) and overall effect of 0.48.

0		pass			leeve	T		Std. Mean Difference	Ma		Std. Mean Difference
Study or Subgroup	Mean	SD	lotal	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Random, 95% CI
1.1.1 BMI (3-6) months											
Khourshed et al, 2013	33.8		53	31.6		42	3.7%	0.31 [-0.10, 0.72]			
Caradina et al, 2014		5.5	74		7.8	- 34	3.7%	-0.49 [-0.90, -0.08]			
Castro et al, 2015		6.7	71	33.1	4.7	17	3.5%	0.26 [-0.27, 0.80]			
Creange et al, 2018	36.47			38.57		283		-0.02 [-0.20, 0.17]			-
Khan et al, 2018	35.57			37.16		28	3.5%	-2.27 [-2.77, -1.78]		-	
Antonopulos et al, 2019		7.05	83			61	3.8%	0.56 [0.22, 0.89]			
Al Sabah et al, 2020 Subtotal (95% CI)	35.7	5.2	48 632	34.5	5.4	38 503	3.6% 25.8%	0.22 [-0.21, 0.86] -0.19 [-0.75, 0.37]	2020		-
Heterogeneity: Tau ^a = 0.53 Test for overall effect: Z = 0				5(P < 0.	00001); I* = 9	4%				
1.1.2 BMI 12 Months											
Abu-ghazia et al, 2011	31.8	5.1	18	31	8.9	18	3.2%	0.11 [-0.55, 0.76]	2011		
Shimizu et al, 2013		16.9			2.1	2		2.91 [0.75, 5.06]			
Khourshed et al, 2013		5.5				42		0.40[-0.01, 0.81]			<u> </u>
Marin-perez et al, 2013	31	7	39	33	6	20		-0.30 [-0.84, 0.25]			
Carr et al, 2014	* -	5.17	64		5.46	25	3.6%	-0.92 [-1.41, -0.44]			
Caradina et al, 2014	31.4		-		5.4	34		-0.74 [-1.15, -0.32]			<u> </u>
Castro et al, 2015	35.1		71		0	17		Not estimable			
Pawan et al, 2017	29.15		35		5.3	17	3.4%	0.50 [-0.09, 1.09]			
Avsar et al, 2018	31.6	7.8	29	32.3		20		-0.10[-0.67, 0.47]			
Ratios et al. 2018	31.05	5.7	1096	33.6	8.5	123	4.0%	-0.44 [-0.63, -0.25]	2018		
Creange et al, 2018	33.71	5.69	192	35.42	7.28	283	4.0%	-0.26 [-0.44, -0.07]	2018		
Antonopulos et al, 2019	32.5	6.63	83	30.2	3.05	61	3.8%	0.42 [0.09, 0.76]	2019		
Alsabah et al, 2020	34.5	5.5	48	31.7	4.7	38	3.6%	0.54 [0.10, 0.98]			
Subtotal (95% CI)			1809			700		-0.04 [-0.32, 0.25]			•
Heterogeneity: Tau ^a = 0.19 Test for overall effect. Z = 0				I(P < 0.	00001);	14%				
1.1.3 BMI 24 Months											
Caradina et al, 2014		4.8		35.1		34	3.7%	-0.74 [-1.15, -0.32]	2014		
Pawan et al, 2017	28.55			26.6		17	3.4%	0.33 [-0.25, 0.91]	2017		
Creange et al, 2018	22.93	5.5		38.34	8.74	283		-2.02 [-2.25, -1.80]	2018		
Subtotal (95% CI)			301			334	11.0%	-0.83 [-2.18, 0.52]			
Heterogeneity: Tau ^a = 1.37			-	(P < 0.0	0001);	I ² = 97	%				
Test for overall effect: Z = 1	1.21 (P =	= 0.23)									
1.1.4 BMI 36 Months	22.4	5.0	74	22.4			2.74	0.051.055.050	2014		
Caradina et al, 2014 Creace et al, 2019		5.3		33.4 38.48		34		-0.25 [-0.65, 0.16]			
Creange et al, 2018 Alcoholi et al, 2020	34.26	5.3	182	30.40		283 38	4.0%	-0.29 [-0.47, -0.10] 0.35 [-0.08, 0.78]			
Alsabah et al, 2020 Subtotal (95% CI)	33.3	2.3	312	31.0	0.5	355	3.0% 11.3%	-0.09 [-0.46, 0.27]	2020		
Heterogeneity: Tau ² = 0.07	- Ch#-	7.06		2 = 0.02	V P - 7		1.0.0				T
Test for overall effect Z = 0				- 0.03	<u>,, -</u> ,	2.0					
1.1.5 BMI 48 Months											
Caradina et al, 2014	33	5.5	74	38.7	6.7	34	3.7%	-0.62 [-1.04, -0.21]	2014		
Creange et al, 2018	34.83	5.66	192	36.77	8.48	283	4.0%	-0.26 [-0.44, -0.08]			
Al Sabah et al, 2020	33.4	5.3		31	3.2		4.4.4	0.53 [0.09, 0.97]	2020		
Subtotal (95% CI)			312			355	11.3%	-0.13 [-0.67, 0.41]			
Heterogeneity: Tau ² = 0.19 Test for overall effect Z = 0			-	(P = 0.0	005); 1	P = 879	6				
Total (95% CI)			3366			2247	100.0%	-0.17 [-0.42, 0.09]			◆
Heteropeneity: Tau ^a = 0.43	; ¢hi⁼=	449.8	5, df = 1	27 (P < 1	0.0000	1); P=	94%			-2	-1 0 1
1160010 Maildab: 100 - 0140										• 2	
Test for overall effect Z = 1	.25 (P =	: 0.21)								-	Favour Bypass Favour Steeve

(1) Overall analysis:

The overall analysis for postoperative BMI between RYGB and MGB showed that there was a significant

difference favoring RYGB, with significantly high heterogeneity percent (l^2 =89%, P<0.00001) and overall effect of 3.28.

Short-ter	m BMI results (3–6 months after c	onversion)						
		BMI 6 mon	ths RYGB	BMI 6 mo	onths SG	BMI 6 months MGB		
No	Study	Mean	SD	Mean	SD	Mean	SD	
6	Khoursheed et al. [17]	33.8	5.7	31.6	8.4			
10	Carandina et al. [21]	36.4	5.5	39.5	7.8			
12	Castro et al. [23]	34.8	6.7	33.1	4.7			
18	Creange et al. [29]	36.47	6.37	36.57	6.83			
20	Khan <i>et al</i> . [31]	35.57	0.52	37.16	1.17			
25	Salama and Sabry [4]	29.89	5.69			30.15	5.36	
31	Chiappetta et al. [40]	34.1	6.2			40.9	6.8	
32	Antonopulos et al. [41]	35.2	7.05	32.1	2.23			
34	Al-Sabah <i>et al</i> . [43]	35.7	5.2	34.5	5.7			
Long ter	m BMI results (12 months postcon	version)						
-		BMI 12 RYC		BMI 12 m	onths SG	BMI 12 mo	nths MGB	
No	Study	Mean	SD	Mean	SD	Mean	SD	
2	Abu-ghazla <i>et al.</i> [13]	31.8	5.1	31	8.9			
4	Shimizu et al. [15]	67.5	16.9	16.8	2.1			
6	Khoursheed et al. [17]	34.7	5.5	32.3	6.4			
7	Marin-Perez et al. [18]	31	7	33	6			
9	Carr <i>et al</i> . [20]	39.4	5.17	44.3	5.46			
10	Carandina <i>et al</i> . [21]	31.4	4.8	35.1	5.4			
12	Castro et al. [23]	35.1	3.4	33.4	0			
16	Pawan <i>et al</i> . [27]	30.9	6.3	26.3	5.3	27.4	5.2	
18	Creange et al. [29]	33.71	5.69	35.42	7.28			
19	Avsar <i>et al</i> . [30]	31.6	7.8	32.3	5.4			
21	Rafols et al. [32]	31.8	6	33.6	6.5	30.3	5.4	
22	Almalki et al. [33]	30.3	6.8			27.2	6.2	
31	Chiappetta et al. [40]	33.5	5.6			36.6	6.3	
32	Antonopulos et al. [41]	32.5	6.63	30.2	3.05			
33	Poublon et al. [42]	31.6	3.5			30.7	3.5	
34	Al-Sabah <i>et al</i> . [43]	34.5	5.5	31.7	4.7			
Long-ter	m BMI results							
		BMI 24 RYC		BMI 24 m	onths SG	BMI 24 mo	nths MGB	
No	Study	Mean	SD	Mean	SD	Mean	SD	
10	Carandina et al. [21]	31.4	4.8	35.1	5.4			
16	Pawan <i>et al</i> . [27]	30.3	7	26.6	4.8	26.8	5.4	
18	Creange et al. [29]	22.93	5.5	38.34	8.74			
33	Poublon et al. [42]	32.6	5.9			30.8	5.2	
		BMI 36 RYC		BMI 36 m	onths SG	BMI 36 mo	nths MGB	
No	Study	Mean	SD	Mean	SD	Mean	SD	
10	Carandina et al. [21]	32.1	5.3	33.4	5.1			
18	Creange et al. [29]	34.26	6.61	36.46	8.34			
27	Nevo et al. [37]	33.9	7.9			30.7	9.4	
33	Poublon et al. [42]	31.1	5.1			34.5	7.1	
34	Al-Sabah <i>et al</i> . [43]	33.5	5.3	31.6	5.5			
		BMI 48 RYC		BMI 48 m	onths SG	BMI 48 mo	nths MGB	
No	Study	Mean	SD	Mean	SD	Mean	SD	
10	Carandina et al. [21]	33	5.5	36.7	6.7			
18	Creange et al. [29]	34.83	5.66	36.77	8.48			
34	Al-Sabah <i>et al</i> . [43]	33.7	5.3	31	3.2			

Table 13 Postoperative BMI changes

DF, difference; LAGB, laparoscopic adjustable gastric band; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

Table 14 Postoperative extra weight loss percentage changes

Short-term % EWL results (3-6 months after conversion)

			6 months GB	% EWL 6 S	6 months G	% EV	
No	Study	Mean	SD	Mean	SD	Mean	SD
3	Khoursheed et al. [17]	42	13.1	45.6	14.5		
10	Carandina et al. [21]	45.2	14.2	37.4	13.8		
1	Gonzalez-Heredia et al. [22]	36.2	19.4	53.04	17.3		
2	Castro et al. [23]	51	26.2	50.4	21.9		
8	Creange et al. [29]	17.8	7.5	14.5	7		
19	Avsar <i>et al</i> . [30]	53.6	22.3	51.3	23.6		
20	Khan <i>et al.</i> [31]	57.1	2.7	52.1	5.8		
31	Chiappetta et al. [40]	11	12			15	10
32	Antonopulos et al. [41]	47.9	30.18	61.2	10.35		
% EWL results (12 months postconversion)							
			months GB	BMI 6 m	onths SG	BMI6 r MC	
No	Study	Mean	SD	Mean	SD	Mean	SD
2	Abu-ghazla et al. [13]	52	44.3	69.7	39.2		
5	Moon et al. [16]	57.4	17	47.4	4.2		
3	Khoursheed et al. [17]	45.6	13.1	47.4	14.5		
7	Marin-Perez et al. [18]	59	20	35	20		
)	Carr et al. [20]	52.7	23.77	44.7	32.74		
0	Carandina et al. [21]	59.9	16.7	52.2	11.4		
11	Gonzalez-Heredia et al. [22]	46	25	64.4	20.6		
12	Castro et al. [23]	49.8	13.7	46.1	0		
13	Angrisani et al. [24]	65.8	27.1	67.2	54		
14	Ngiam <i>et al</i> . [25]	46.3	17.9	58.7	4.5		
16	Pawan <i>et al</i> . [27]	54.5	7	76.5	5.4	73.6	4.8
18	Creange et al. [29]	23.1	9.3	17.3	10.3		
19	Avsar <i>et al</i> . [30]	70.1	24.3	56.1	33.8		
21	Rafols et al. [32]	66.6	30.4	59.1	24.5	74.4	28.9
22	Almalki <i>et al</i> .[33]	32.9	35.1			76.8	57.1
31	Chiappetta et al. [40]	22	18			29	13
32	Antonopulos et al. [41]	61.2	38.23	71.2	17.3		
33	Poublon et al. [42]	60	30.1			69	44.6
_ong-term % EWL results							
			VL 24 8 RYGB	% EV month	VL 24 ns SG	% EV months	
No	Study	Mean	SD	Mean	SD	Mean	SD
5	Moon <i>et al</i> . [16]	62.4	19.6	65.6	34.5		
7	Marin-Perez et al. [18]	55	22	28	25		
)	Carr et al. [20]	47.9	29.79	42	29.67		
10	Carandina et al. [21]	70.2	16.7	59.9	14.4		
14	Ngiam <i>et al.</i> [25]	58.6	133.3	16.2	39.3		
16	Pawan <i>et al</i> . [27]	51.6	26.2	101.7	124.4	76.7	24.1
18	Creange et al. [29]	23.4	11.2	12.6	14.2		
33	Poublon et al. [42]	68.6	51.6			56.4	35.4
			VL 36 8 RYGB	% EV month		% EV months	
No	Study	Mean	SD	Mean	SD	Mean	SD
10	Carandina et al. [21]	68.3	17.6	65.6	13.1		
13	Angrisani <i>et al</i> . [24]	69.8	26.4	62.8	34.5		
18	Creange et al. [29]	22.7	12	15.4	9.4		
26	van Wezenbeek et al. [36]	71.7	23.8	56.6	24.4		
33	Poublon et al. [42]	46.5	35			58.3	36
			VL 48 s RYGB	% EV month		% EV months	
No	Study	Mean	SD	Mean	SD	Mean	SD
10	Carandina et al. [21]	67.3	18.7	58.9	14.4		
18	Creange et al. [29]	22.3	13.2	13.2	11.9		

% EWL, extra weight loss percentage; df, difference; LAGB, laparoscopic adjustable gastric band; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

Operative time

(1) Comparison between gastric bypasses (RYGB and MGB) and SG (Fig. 10).

In 13 studies comparing the mean operative time between gastric bypass and SG, there was a significant difference for shorter operative time favoring SG, with significantly high heterogeneity percent (I^2 =83%, P<0.00001) and overall effect of 11.10 (Table 15).

(1) Comparison between gastric bypasses (RYGB and MGB) (Fig. 11).

In four studies comparing the mean operative time between MGB and RYGB, there was a significant difference for shorter operative time favoring MGB, with nonsignificant no heterogeneity percent ($I^2=0\%$, P=0.52) and overall effect of 12.88.

Length of hospital stay

(1) Comparison between gastric bypasses (RYGB and MGB) and SG (Fig. 12).

In 15 studies comparing the mean length of hospital stay (days) between gastric bypass and SG, there was a significant difference for shorter stay favoring SG, with significantly high heterogeneity percent (I^2 =81%, P<0.00001) and overall effect of 2.24 (Table 16).

(1) Comparison between gastric bypasses (RYGB and MGB) (Fig. 13).

In four studies comparing the mean length of hospital stay (days) between MGB and RYGB, there was no significant difference, with significantly high heterogeneity percent (I^2 =89%, P<0.00001) and overall effect of 0.13.

Figure 7

	F	RYGB		1	MGB			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% CI
2.1.1 3-6 months										
Salama et al, 2016	29.89	5.69	21	30.15	5.36	39	8.3%	-0.05 (-0.58, 0.48)	2016	
Chipetta et al, 2019	34.1	6.2	21	40.9	6.8	34	7.9%	-1.02 [-1.60, -0.44]	2019	<u> </u>
Subtotal (95% CI)			42			73	16.2%	-0.53 [-1.48, 0.43]		
Heterogeneity: Tau ² =	0.39; Ci	hi? = 5.	89, df =	: 1 (P =	0.02);	P= 839	%			
Test for overall effect	Z = 1.08	:(P=(.28)							
2.1.2 12 months										
Pawan et al. 2017	30.9	6.3	9	27.4	52	26	6.2%	0.62 (-0.15, 1.40)	2017	
Raflos et al. 2018		6				191		0.25 [0.10, 0.41]		
El malki et al, 2018		6.8					9.6%	0.48 [0.08, 0.88]		
Chipetta et al, 2019		5.6			6.3		8.1%	-0.51 [-1.06, 0.05]		
Poublon et al, 2020			306				11.4%	0.26 [0.07, 0.44]		
Subtotal (95% CI)		•.•	1276	**.*	v . v		46.8%	0.23 [0.02, 0.45]		◆
Heterogeneity: Tau ² =	: 0.03; Ci	hi² = 9.	36. df =	4 (P =	0.05);	P = 579	%	• • •		-
Test for overall effect				. (
2.1.3 24 months										
Pawan et al, 2017	30.3	7	9	26.8				0.59 (-0.19, 1.36)	2017	
Poublon et al, 2020	32.6	5.9	306	30.8	5.2		11.4%	0.32 (0.13, 0.50)	2020	
Subtotal (95% CI)			315			211		0.33 [0.15, 0.51]		•
Heterogeneity: Tau ² =				-	0.51);	P= 0%				
Test for overall effect	Z = 3.65	(P=0).0003)							
2.1.4 36 months										
Poublon et al, 2020	31.1	5.1	306	34.5	7.1	185	11.4%	-0.57 [-0.76, -0.39]	2020	
Nevo et al, 2021		7.9					8.1%	0.37 [-0.18, 0.92]		
Subtotal (95% CI)			339			206	19.5%	-0.14 [-1.06, 0.78]		
Heterogeneity: Tau ² =	0.40; Cł	hi² = 10	0.07, di	= 1 (P =	0.000	2); P = 9	90%			
Test for overall effect	Z = 0.29	(P = 0),77)							
Total (95% CI)			1972			1007	100.0%	0.06 [-0.22, 0.33]		•
Heterogeneity: Tau ² =	= 0.17; Ci	hi ² = 8	8.87. dt	= 10 /P	< 0.00	0001):1	²= 89%			+ + + + + +
Test for overall effect										-2 -1 0 1 2
Test for subgroup dif				d - 2 /5	- 0.2	6) F-	26.2%			RYGB MGB

Subgroup meta-analysis for postoperative BMI between RYGB and MGB. MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

Overall incidence of postoperative major complications

- (1) Comparison between gastric bypasses (RYGB and MGB) and SG (Fig. 14).
 - (a) Early (<30 days):
 In 15 studies comparing the presence of early major complications within 30 days

Figure 8

postoperatively between gastric bypass and SG, there was a significant difference for higher incidence favoring SG, with nonsignificant moderate heterogeneity percent (I^2 =41%, P=0.06) and overall effect of 3.09.

~		ypass		-	30000			std. Mean Difference		Std. Mean Difference
Study or Subgroup 3.1.1 3.6 Months	Mean	\$0	Total	Mean	\$0	Total	Weight	IV, Random, 95% CI	Year	N, Random, 95% Cl
chourshed et al, 2013	42	13.1	53	45.6	14.5	42	3.1%	-0.26 [-0.67, 0.15]	2013	
Caradina et al, 2014	45.2	14.2	74	37.4	13.8	34	3.1%	0.55 [0.14, 0.96]		
Gonzalez-Herida et al. 2014	36.2	19.4	12	53.04	17.3	26	2.3%	-0.92 [-1.64, -0.20]		•
Castro et al, 2015	51	26.2	71	50.4	21.9	17	2.8%	0.02[-0.51, 0.55]		
Creange et al, 2018	17.8	7.5	192	14.5	7	283	3.6%	0.46 [0.27, 0.64]		
Avsar et al. 2018	53.6	22.3	29	51.3	23.6	20	2.7%	0.10[-0.47, 0.67]		
khan et al, 2018	57.1	2.7	113	52.1	5.8	28	3.0%			_
								1.41 [0.97, 1.86]		
Antonopulos et al, 2019 Subtotal (95% CI)		30.18	83 627		10.35	61 511	3.3% 23.6%	-0.55 [-0.89, -0.22] 0.12 [-0.32, 0.57]	2019	-
Heterogeneity: Tau* = 0.36; Ch Test for overall effect Z = 0.54			7 (P < 0	0.00001)); 1" = 90)%				
3.1.2 12 Months										
Abu-ghazia et al, 2011	52	44.3	18	69.7	39.2	18	2.4%	-0.41 [-1.07, 0.25]	2011	
	57.4			47.4		13				
Moon et al, 2013		17	41		4.2		2.5%	0.66 [0.02, 1.29]		
khourshed et al, 2013	45.6	13.1	53	47.4	14.5	42	3.1%	0.13[-0.54, 0.28]		
Marin-perez et al, 2013	59	20	39	35	20	20	2.6%	1.18 [0.60, 1.77]		→
Carretal, 2014		23.77	64		32.74	25	2.9%	0.30 [-0.17, 0.76]	2014	
Caradina et al, 2014	59.9	16.7	74	52.2	11.4	34	3.1%	0.50 [0.09, 0.91]	2014	
Gonzalez-Herida et al, 2014	46	25	12	64.4	20.6	26	2.3%	-0.82 [-1.53, -0.11]		•
Castro et al. 2015	49.8	13.7	71	46.1	0	17		Not estimable		
Angrisani et al, 2016	65.8	27.1	24	67.2	54	27	2.7%	-0.03 [-0.58, 0.52]		
Ngiam et al, 2016	46.3	17.9	9	58.7	4.5		1.7%	-0.90 [-1.89, 0.08]		•
	64.05	5.9	35	76.5	5.4	17	2.3%	-2.13[-2.85, -1.41]		•
Pawan et al, 2017 Crosses et al, 2018					* · · ·					
Creange et al, 2018	23.1	9.3	192	17.3	10.3	283	3.6%	0.58 [0.40, 0.77]		
Avsar et al, 2018	70.1	24.3	29	56.1	33.8	20	2.6%	0.48 [-0.10, 1.06]		
Raflos et al, 2018		29.65		59.1	24.5	123	3.6%	0.39 (0.20, 0.58)		
Antonopulos et al, 2019 Subtotal (95% CI)	61.2	38.23	83 1840	71.2	17.3	61 735	3.3% 38.6%	-0.32 [-0.65, 0.01] 0.02 [-0.30, 0.33]	2019	
Heteropeneity: Tau# = 0.28; C# Test for overall effect: Z = 0.10			:13 (P	< 0.000	01); P =	87%				
3.1.3 24 Months										
Moon et al, 2013	62.4	19.6	41	65.6	34.5	13	2.5%	-0.13 [-0.76, 0.49]	2013	
Marin-Perez et al, 2013	55	22	39	28	25	20	2.6%	1.16 [0.58, 1.74]		│ •
Carr et al. 2014		29.79	64	42	29.67	25	2.9%	0.20 [-0.27, 0.68]		
Caradina et al, 2014	70.2	16.7	74	59.9	14.4	34	3.1%	0.64 [0.22, 1.05]		
Ngiam et al, 2016		133.3	9	16.2	39.3	9	1.8%	0.41 [-0.53, 1.35]		
			-			17				
Pawan et al, 2017	84.15			10.17			2.6%	0.72 [0.13, 1.32]		
Creange et al, 2018 Subtotal (95% CI)	23.4	4.2	192 454	12.6	14.2	283 401	3.6% 19.0%	0.96 [0.76, 1.15] 0.60 [0.27, 0.93]	2018	
Heterogeneity: Tau ² = 0.12; Cit Test for overall effect Z = 3.59			6 (P = 0).003); P	= 70%					
3,1,4 36 Months										
Caradina et al. 2014	68.3	17.6	74	65.6	13.1	34	3.1%	0.16[-0.24, 0.57]	2014	
	69.8	26.4	24		34.5	27	2.7%			
Angrisani et al, 2016 Norsebasis et al, 2016								0.22[-0.33, 0.77]		
Vezenbeek et al, 2016 Creange et al, 2018	22.7 71.7		192	15.4 56.6		283	2.8%	0.62 [0.09, 1.15] 0.62 [0.44, 0.81]		
Subtotal (95% CI)		df - 2	405	0.2		360	12.1%	0.45 [0.19, 0.71]		
Heteropeneity: Tau* = 0.03; Ch Test for overall effect Z = 3.43		-	(r ≠ 0.)	15), P =	** 70					
3.1.5 48 Months										
Caradina et al. 2014	67.3	18.7	74	58.9	14.4	34	3.1%	0.48 [0.07, 0.89]	2014	
Creange et al. 2018 Subtotal (95% CI)				13.2			3.6%	0.73 [0.54, 0.92] 0.67 [0.46, 0.88]		
Heteropeneity: Tau# = 0.01; Ch Test for overall effect Z = 6.33				27); 1* =	17%					
			3592			2324	100.0%	0.25 [0.07, 0.42]		•
Total (95% CI)										-
Total (95% CI) Heteropeneity: Tau# = 0.21; C# Test for overall effect. Z = 2.79			: 34 (P	< 0.000	01); P=	86%				-1 -0.5 0 0.5 1

Subgroup meta-analysis for postoperative % EWL between gastric bypass and sleeve gastrectomy. % EWI, extra weight loss percentage.

- (b) Late (>30 days):
 - In seven studies comparing presence of late major complications after 30 days postoperatively between gastric bypass and SG, there was no significant difference, with significantly moderate heterogeneity percent $(I^2=55\%, P=0.04)$ and overall effect of 0.59.
- (c) Overall analysis: The overall analysis for postoperative major complications between gastric sleeve and gastric bypass showed that there was a nonsignificant difference, with significantly moderate heterogeneity percent (I^2 =66%, P<0.00001) and overall effect of 1.09.
- (2) Comparison between gastric bypasses (RYGB and MGB) (Fig. 15).
 - (a) Early (<30 days):

In four studies comparing presence of early major complications within 30 days postoperatively between RYGB and MGB, there was a nonsignificant difference, with nonsignificant no heterogeneity percent (I^2 =0%, P=0.42) and overall effect of 1.81.

 (b) Late (>30 days): In two studies comparing the presence of late major complications after 30 days postoperatively in RYGB and MGB, there was no significant difference, with

		RYGB			MGB			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	N, Random, 95% Cl	Year	N, Random, 95% Cl
1.1.1 3-6 Months										
Chipetta et al, 2019 Subtotal (95% CI)	11	12	21 21	15	10	34 34	9.8% 9.8%		2019	•
Heterogeneity: Not ap	plicable									
Fest for overall effect	Z=1.30	(P=(0.19)							
1.1.2 12 Months										
Pawan et al, 2017	54.5	7	9	73.6	4.8	26	4.5%	-3.45 [-4.59, -2.30]	2017 ←	<u> </u>
El malki et al, 2018	32.9	35.1	35	76.8	57.1	81	11.6%			
Raflos et al, 2018	66.6	30.4	905	74.4	28.9	191	14.5%	-0.26 [-0.42, -0.10]	2018	*
Chipetta et al, 2019	22	18	21	29	13	34	9.8%	-0.46 [-1.01, 0.09]	2019	
Poublon et al, 2020	60	30.1	306	69	44.6		14.2%		2020	*
Subtotal (95% CI)			1276			517	54.6%	-0.71 [-1.13, -0.28]		◆
Heterogeneity: Tau² = Fest for overall effect				(P -	< 0.001	001); P	= 89%			
1.1.3 24 Months										
Pawan et al, 2017	51.6	26.2	9	76.7	24.1	26	7.1%	-1.00 [-1.79, -0.20]	2017	
Poublon et al, 2020 Subtotal (95% CI)	68.6	51.6	306 315	56.4	35.4		14.2% 21.3%		2020	*
Heterogeneity: Tau² = Fest for overall effect				= 1 (P =	0.003)	(P = 89	1%			
1620101 016101 61666	2 - 0.40	- (r - (
1.1.4 36 Months										
Poublon et al, 2020 Subtotal (95% CI)	46.5	35	306 306	58.3	36		14.2% 14.2%	-0.33 [-0.52, -0.15] -0.33 [-0.52, -0.15]	2020	+ ♦
Heterogeneity: Not ap	plicable									
Fest for overall effect	Z = 3.55	(P=(0.0004)							
			1918			947	100.0%	-0.49 [-0.78, -0.20]		•
fotal (95% CI)										1
Fotal (95% CI) Heterogeneity: Tau² =	0.15; Cł	hi² = 7	2.59, di	= 8 (P	< 0.000	001); P	= 89%		-	-2 -1 0 1 2

Subgroup meta-analysis for postoperative % EWL between RYGB and MGB. % EWI, extra weight loss percentage; MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

Figure 9

nonsignificant no heterogeneity percent $(I^2=0\%, P=0.54)$ and overall effect of 0.03.

(c) Overall analysis:

The overall analysis for postoperative major complications between RYGB and MGB showed that there was a nonsignificant difference, with nonsignificant no heterogeneity percent (I^2 =0%, P=0.45) and overall effect of 1.31.

Table 17

Overall rates of postoperative leakage and major bleeding complications

(1) Comparison between gastric bypasses (RYGB and MGB) and SG (Fig. 16).

(a) Leakage:

In 12 studies comparing the presence of rates of leakage and major bleeding complications between gastric bypass and SG, there was no significant difference, with a significantly moderate heterogeneity percent $(I^2=48\%, P=0.04)$ and overall effect of 0.99 (Table 17).

(1) Major bleeding:

In 10 studies comparing presence of major bleeding incidence between gastric bypass and SG, there was no significant difference, with a significantly moderate heterogeneity percent ($I^2=77\%$, P<0.0001) and overall effect of 0.50.

Figure 10

(1) Overall analysis:

The overall analysis for postoperative incidence of major bleeding and leakage between gastric sleeve and gastric bypass showed that there was a nonsignificant difference, with significantly moderate heterogeneity percent (I^2 =66%, P<0.00001) and overall effect of 1.27.

- (1) Comparison between gastric bypasses (RYGB and MGB) (Fig. 17).
 - (a) Leakage:

In four studies comparing the presence of rates of leakage and major bleeding complications between RYGB and MGB, there was no significant difference, with a nonsignificant no heterogeneity percent (I^2 =0%, P=0.58) and overall effect of 0.13.

(1) Major bleeding:

In three studies comparing presence of major bleeding incidence between RYGB and MGB, there was no significant difference, with a nonsignificant no heterogeneity percent (I^2 =0%, P=0.52) and overall effect of 1.0.

(1) Overall analysis:

The overall analysis for postoperative incidence of major bleeding and leakage between RYGB and

	Ð	ypass		9	Sleeve		1	Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	N, Randorn, 95% Cl
Bhaskar et al, 2010	85	29	15	n	32.5	26	4.7%	0.41 [-0.23, 1.05]	2010	
Abu-ghazia et al, 2011	195	58	18	111	28	18	3.5%	1.78 [0.99, 2.56]	2011	
Khourshed et al, 2013	161.2	41.2	53	108.4	20.1	42	7.2%	1.56 [1.10, 2.02]	2013	
Marin-Perez et al, 2013	142	50	39	121	23	20	5.9%	0.48 [-0.06, 1.03]	2013	+
Caradina et al, 2014	172	60.5	74	91	32.5	34	7.4%	1.51 (1.05, 1.96)	2014	
Gorzalez-Herida et al, 2014	218	99.5	12	140	50.7	26	3.9%	1.10 (0.37, 1.83)	2014	
Angrisani et al, 2016	140	45	24	125	50	27	5.8%	0.31 [-0.24, 0.86]	2016	
Wezenbeek et al, 2016	130.7	47.03	115	100.6	19.6	16	6.2%	0.67 (0.14, 1.20)	2016	
Janik et al, 2017	151	58	1354	113	45	1354	16.4%	0.73 (0.65, 0.81)	2017	+
Pawan et al, 2017	199.55	53.4	35	172.7	70.6	17	5.4%	0.44 [-0.14, 1.03]	2017	+
Yilmaz et al, 2017	112.4	28.3	9	82.4	17.3	23	3.1%	1.41 (0.55, 2.26)	2017	
Creange et al, 2018	160.1	47.4	192	115.5	40	283	13.7%	1.03 (0.84, 1.23)	2018	
Janik et al, 2021	162.28	64.94	5043	108.45	46.78	9192	16.8%	1.00 (0.96, 1.03)	2021	•
Total (95% CI)			6983			11078	100.0%	0.93 [0.77, 1.10]		•
Heterogeneity: Tau ^a = 0.04; C	hii = 70.2	2, dí = 1	2(P<0),00001);	P= 839	6			,	
Test for overall effect Z = 11.1										-1 -0.5 0 0.5 1 Democe Stores
TESLIUT OVERAIL BIBUL Z = 11.1	1016<00	.0001)								Bypass Sleeve

Meta-analysis for mean operative time between gastric bypass and sleeve gastrectomy.

Table 15 Operative time

		RY	GB	S	G	M	ЗB
No	Study	Mean	SD	Mean	SD	Mean	SD
1	Bhaskar <i>et al</i> . [12]	85	29	72	32.5		
2	Abu-ghazla et al. [13]	195	59	111	28		
6	Khoursheed et al. [17]	161.2	41.2	108.4	20.1		
7	Marin-Perez et al. [18]	142	50	121	23		
10	Carandina et al. [21]	172	60.5	91	32.5		
11	Gonzalez-Heredia et al. [22]	218.4	99.5	140	50.7		
13	Angrisani <i>et al</i> . [24]	140	45	125	50		
16	Pawan <i>et al</i> . [27]	218.9	48.1	172.7	70.6	180.2	58.7
17	Janik <i>et al</i> . [28]	151	58	113	45		
18	Creange et al. [29]	160.1	47.4	115.5	40		
22	Almalki <i>et al</i> . [33]	218.3	44.5			167.7	55.8
24	Janik <i>et al</i> . [35]	162.28	64.94	108.45	46.78		
25	Salama and Sabry [4]	185.16	57.78			145.41	29.18
26	van Wezenbeek et al. [36]	130.7	47.03	100.6	19.6		
29	Yilmaz et al. [39]	112.4	28.3	82.4	17.3		
33	Poublon et al. [42]	83	9.25			72	9.75

MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy.

Figure 11

	F	RYG8		MGB			Std. Mean Difference			Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	N, Random, 95% Cl	Year	N, Random, 95% Cl		
Salama et al, 2016	185.16	57.78	21	145.41	29.18	39	8.8%	0.95 (0.39, 1.51)	2016			
Pawan et al, 2017	218.9	48.1	9	180.2	58.7	26	4.5%	0.67 [-0.10, 1.45]	2017			
El malki et al, 2018	218.3	44.5	35	167.7	55.8	81	15.8%	0.95 [0.54, 1.37]	2018			
Poublon et al, 2020	83	9.25	306	72	9.79	185	70.8%	1.16 (0.96, 1.36)	2020	+		
Total (95% CI)			371			331	100.0%	1.09 [0.92, 1.25]		•		
Heterogeneity: Tau ² =	0.00; Chi	P= 2.28	, df = 3	(P = 0.52	(); P = 0	%						
Test for overall effect .	Z=12.88) (P < () (00001)							-1 -0.5 0 0.5 1 RYGB MGB		

MGB showed that there was a nonsignificant difference, with a nonsignificant no heterogeneity percent (I^2 =0%, P=0.71) and overall effect of 0.72.

Table 18

Discussion

Restrictive bariatric operations such as LAGB, VBG, and SG are commonly used because they are technically simple, low risk, and have satisfactory medium-term outcomes [44]. LAGB and VBG were common bariatric treatments in the late 1990s. Initially, good outcomes were reported, with weight loss of 54–58% [45]. Extended follow-up, on the contrary, revealed considerable failure rates (20–56%) [46]. Pouch dilatation or slippage is the most common cause of failure. Band erosion, tubing leakage, or port site issues

(inversion, hernia, or discomfort) are all possible reasons [47].

In 1987, DeMeester conducted the first SG as part of his biliopancreatic diversion with duodenal switch (BPD-DS) procedure [48]. The effect of SG is thought to be due to ghrelin restriction and decrease caused by the ablation of orexigenic cells, as well as hastened stomach emptying [49]. It was initially employed as a two-step technique for the superobese, but it resulted in good weight loss and comorbidity resolution with minimal complication rates [50]. As a result, LSG is becoming more popular as a stand-alone operation, with promising long-term results [51].

The effect of SG on weight loss, hypertension, type 2 diabetes mellitus, and dyslipidemia has received a lot of

Obstant Octomer		wass co			Sleeve			Std. Mean Difference	V			Difference
Study or Subgroup	Mean			Mean	SD	10(3)	Weight				IV, Kanot	m, 95% Cl
Bhaskar et al, 2010	3	2.5	15	3	2	26	4.1%	0.00 [-0.64, 0.64]	2010	<u> </u>		
Abu-ghazia et al, 2011	3.9	1.5	18	4.3	1.4	18	3.9%	-0.27 [-0.93, 0.39]	2011	←		
Marin-Perez et al, 2013	5	7	39	- 4	- 4	20	5.1%	0.16 (-0.38, 0.70)	2013	←		
Moon et al, 2013	1.2	0.4	41	1.5	0.5	13	4.0%	-0.70 [-1.33, -0.06]	2013	←		
Gonzalez-Herida et al, 2014	2.64	1	12	3	1	26	3.6%	-0.35 [-1.04, 0.34]	2014	←		
Caradina et al, 2014	7.1	18.5	74	6.7	15	34	7.2%	0.02 [-0.38, 0.43]	2014	←		·
Castro et al, 2015	6	6.25	71	6	1.25	17	5.3%	0.00 [-0.53, 0.53]	2015	←		
Wezenbeek et al, 2016	4.1	5.8	115	3.8	2.2	16	5.3%	0.05 [-0.47, 0.58]	2016	←		
Angrisani et al, 2016	3	0.5	24	3	2	27	5.0%	0.00[-0.55, 0.55]	2016	←		
Janik et al, 2017	23	2.8	1354	1.8	2.1	1354	14.9%	0.20 [0.13, 0.28]	2017			-
Pawan et al, 2017	5.33	3.3	35	5.7	11.4	17	4.7%	-0.05 [-0.63, 0.53]	2017	←	· · ·	
Yilmaz et al, 2017	6.7	1.4	9	4.2	1.1	23	2.2%	2.05 [1.11, 2.99]	2017			
Creange et al, 2018	3.33	1.78	192	2.11	1.2	283	12.3%	0.83 [0.64, 1.02]	2018			
Khan et al, 2018	3	0.5	113	3	1	28	7.1%	0.00 [-0.41, 0.41]	2018	←		
Janik et al, 2021	2.05	1.53	5043	1.63	2.04	9192	15.3%	0.22 [0.19, 0.26]	2021			
Total (95% CI)			7155			11094	100.0%	0.17 (0.02, 0.32)				
Heterogeneity: Tau ^a = 0.04; C	hi ² = 71.9	39, dî :	:14 (P	< 0.000	01); P	= 81%					1	
Test for overall effect Z = 2.24										-0.2	+0.1 Bypass	0 0.1 Sleeve

attention in the literature [52]. However, modification is required. SG had not yet received enough attention. Patients receiving VBG or AGB procedures are aware that after surgery, there is a significant rate of revision. The question that arises is whether we should convert SG at the same rate according to the VBG or LAGB technique. This is an important query that requires an answer. [53].

Restrictive operations are more likely to result in weight increase over time, especially if patients have some risk factors (age over 45 years, BMI $>50 \text{ kg/m}^2$, eating habits maintenance, and absence of medical follow-up). To evaluate the results, Deitel and Greeinstein advise using the percentage of excess BMI decrease. As a result, if it exceeds 65%, it is termed great; decent if it is between 50 and 65%; and failure if it is less than 50% [54].

There are two scenarios in which weight regain may occur:

(1) Patients who do not have a larger gastric volume. This is a rare occurrence (around 10%), and it mainly happens in persons with eating disorders who eat a high-calorie soft or liquid diet. A malabsorptive method, such as a duodenal switch or a gastric bypass, is the best revisional surgery. The small intestine's enhanced production of ghrelin as a compensation for the excision of the gastric fundus plays a poorly understood role in the technique's failure [49].

(2) Excessive pressure on the gastric remnant induced by excessive food intake, recurrent vomiting, or distal obstruction causes patients with increased stomach volume to dilate gradually over time. Furthermore, the characteristics of the stomach wall may differ, allowing for a bigger dilatation in certain patients than in others [55].

Failure after bariatric surgery is defined as losing less than 50% of EWL during 18–24 months or having a BMI of more than 35 [56].

There are three different terms describing the procedures after primary restrictive operation failure. First one is 'revision' which means an operation that corrects or adjusts the anatomy of a bariatric procedure to improve the outcome in circumstances when the anatomy differs from what was intended or if it had previously been modified and has not resulted in the desired outcome. This also contains manipulation of a gadget that does not result in reversal or conversion. Second term is named 'conversion,' which means changing the anatomy of a bariatric procedure to that of a another, well-known bariatric procedure, and last one is 'reversal,' meaning an operation that restores the GI tract's native anatomy [57].

Table 16 Length of hospital stay

		RY	'GB	S	G	MO	βB
No	Study	Mean	SD	Mean	SD	Mean	SD
1	Bhaskar <i>et al.</i> [12]	3	2.5	3	2		
2	Abu-ghazla et al. [13]	3.9	1.5	4.3	1.4		
5	Moon <i>et al</i> . [16]	1.2	0.4	1.5	0.5		
7	Marin-Perez et al. [18]	5	7	4	4		
10	Carandina et al. [21]	7.1	18.5	6.7	15		
11	Gonzalez-Heredia et al. [22]	2.64	1	3	1		
12	Castro et al. [23]	6	6.25	6	1.25		
13	Angrisani et al. [24]	3	0.5	3	2		
16	Pawan <i>et al</i> . [27]	3.56	1	5.7	11.4	7.1	5.6
17	Janik <i>et al</i> . [28]	2.3	2.8	1.8	2.1		
18	Creange et al. [29]	3.33	1.78	2.11	1.2		
20	Khan <i>et al</i> . [31]	3	0.5	3	1		
22	Almalki <i>et al</i> . [33]	2.9	0.8			4	1.9
24	Janik <i>et al</i> . [35]	2.05	1.53	1.63	2.04		
25	Salama and Sabry [4]	6.29	0.717			4.77	2.27
26	van Wezenbeek et al. [36]	4.1	5.8	3.8	2.2		
27	Nevo <i>et al</i> . [37]	10.5	7.3			4.9	6.9
29	Yilmaz et al. [39]	6.7	1.4	4.2	1.1		

MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy.

Figure 13

		RYGB		1	MGB		Std. Mean Difference			Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Randorn, 95% Cl	Year	IV, Random, 95% Cl		
Salama et al, 2016	6.29	0.717	21	4.77	2.27	39	25.3%	0.80 (0.25, 1.35)	2016	-		
Pawan et al, 2017	3.58	1	9	7.1	5.6	26	22.9%	-0.71 [-1.48, 0.07]	2017			
El malki et al, 2018	2.9	0.8	35	4	1.9	81	26.6%	-0.66 [-1.07, -0.26]	2018			
Nevo et al, 2021	10.5	7.3	33	4.9	6.9	21	25.2%	0.77 [0.20, 1.34]	2021			
Total (95% CI)			98			167	100.0%	0.06 [-0.80, 0.91]		•		
Heterogeneity: Tau² =	0.67; Ci	hi ² = 28.	51, df :	= 3 (P <	0.000	01); P=	89%					
Test for overall effect .			-			"				-2 -1 U 1 2 RYGB MGB		

Meta-analysis for mean length of hospital stay between RYGB and MGB. MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

SG, RYGB, OAGB-MGB, single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S), and BPD-DS are all common revision surgeries. There are no guidelines or assertions of agreement regarding the preferred method of revision [44].

The current study finds an evidence of BMI reduction and/or less surgical complications following revisional surgeries (LRYGB, mini gastric bypass-oneanastomosis gastric bypass (MGB-OAGB), and LSG) after failed restrictive bariatric surgeries.

VBG was once a limiting treatment that is now very rarely used. However, bariatric surgeons frequently have to deal with patients who have had a failed VBG, which is routinely done in the open approach. The most common reason for VBG revision is weight gain, which can occur owing to a breakdown of the staple line or because patients learned to eat food that disintegrates quickly, evading the procedure's restrictive feature. In such circumstances, the initial step in the modification should be to remove the VBG band. Gastrogastrostomy can help patients with restricted symptoms who are not interested in undergoing further bariatric surgery. However, individuals are quite likely to acquire weight as a result of the operation [58].

In relation to LAGB, failure symptoms range from technical faults in the band instrumentation, such as leaks from the pipe connecting the band to the port, to

	Bypa		Sleev			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
9.1.1 early								
Stefanidis et al, 2013	0	25	0	23		Not estimable	2013	
Khourshed et al, 2013	2	53	0	42	2.7%	4.13 [0.19, 88.30]	2013	
Marin-perez et al, 2013	2	39	3	20	5.2%	0.31 [0.05, 2.01]		•
Caradina et al, 2014	4	- 74	1	34	4.2%	1.89 [0.20, 17.54]	2014	
Ngiam et al, 2016	0	9	Û	9		Not estimable	2016	
Yeung et al, 2016	2	32	1	72	3.7%	4.73 [0.41, 54.20]	2016	
Pawan et al, 2017	6	35	0	17	2.9%	7.71 [0.41, 145.38]	2017	
Yilmaz et al, 2017	2	9	3	23	4.9%	1.90 [0.26, 13.87]	2017	· · · · · ·
Janik et al, 2017	44	1354	17	1354	10.5%	2.64 [1.50, 4.65]	2017	
Qiu et al, 2018	3	16	0	3	2.5%	1.81 [0.07, 43.99]	2018	•
Avsar et al, 2018	1	29	6	20	4.3%	0.08 [0.01, 0.76]	2018	•
Creange et al, 2018	14	192	4	283	8.1%	5.49 [1.78, 16.93]	2018	
Antonopulos et al, 2019	11	83	7	61	8.6%	1.18 [0.43, 3.24]	2019	
Alsabah et al, 2020	1	46	0	38	2.5%	2.54 [0.10, 64.12]	2020	• • • • • • • • • • • • • • • • • • • •
Janik et al, 2021	172	5043	108	9192	11.5%	2.97 [2.33, 3.79]	2021	
Subtotal (95% CI)		7039		11191	71.5%	2.12 [1.31, 3.41]		
Total events	264		150					
Heterogeneity: Tau ^a = 0.2	1; Chi ² = 2	0.46, 0	f = 12 (P	= 0.06);	P= 41%			
Test for overall effect Z =	3.09 (P =	0.002)						
9.1.2 late								
Abu-ghazia et al, 2011	1	18	2	18	3.6%	0.47 [0.04, 5.71]	2011	• • • • • • • • • • • • • • • • • • • •
Marin-Perez et al, 2013	8	39	1	20	4.4%	4.90 [0.57, 42.34]		
Moon et al, 2013	2	41	1	13	3.6%	0.62 [0.05, 7.39]	2013	• • • • • • • • • • • • • • • • • • • •
Ngiam et al, 2016	1	9	0	9	2.4%	3.35 [0.12, 93.83]	2016	•
	10	445	10	16	8.0%	0.11 [0.04, 0.34]	2016	←
Wezenbeek et al, 2016	18	115					****	
	18	32		72	2.8%			·
Wezenbeek et al, 2016 Yeung et al, 2016 Avsar et al, 2018				72 20		0.31 [0.02, 6.09]	2016	•
Yeung et al, 2016	0	32	3		2.8%	0.31 [0.02, 6.09]	2016	•
Yeung et al, 2016 Avsar et al, 2018	0	32 29	3	20	2.8% 3.7%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66]	2016	•
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI)	0 2 32	32 29 283	3 1 18	20 168	2.8% 3.7% 28.5%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66]	2016	•
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI) Total events	0 2 32 5; Chi ² = 1	32 29 283 3.37, 0	3 1 18	20 168	2.8% 3.7% 28.5%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66]	2016	•
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ^a = 1.5	0 2 32 5; Chi ² = 1	32 29 283 3.37, 0	3 1 18	20 168 0.04); P	2.8% 3.7% 28.5%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66]	2016	•
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.5 Test for overall effect. Z =	0 2 32 5; Chi ² = 1	32 29 283 3.37, 0 0.55)	3 1 18	20 168 0.04); P	2.8% 3.7% 28.5%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66] 0.68 [0.19, 2.45]	2016	•
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ^a = 1.5 Test for overall effect: Z = Total (95% CI) Total events	0 2 32 5; Chi ² = 1 0.59 (P = 296	32 29 283 3.37, 0 0.55) 7322	3 1 18 #f = 6 (P = 168	20 168 0.04); P 11359	2.8% 3.7% 28.5% = 55% 100.0%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66] 0.68 [0.19, 2.45] 1.38 [0.78, 2.44]	2016	
Yeung et al, 2016 Avsar et al, 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ^a = 1.5 Test for overall effect: Z = Total (95% CI)	0 2 32 5; Chi ² = 1 0.59 (P = 296 2; Chi ² = 5	32 29 283 3.37, 0 0.55) 7322 55.40, 0	3 1 18 #f = 6 (P = 168	20 168 0.04); P 11359	2.8% 3.7% 28.5% = 55% 100.0%	0.31 [0.02, 6.09] 1.41 [0.12, 16.66] 0.68 [0.19, 2.45] 1.38 [0.78, 2.44]	2016	•

Meta-analysis for incidence of postoperative major complications between gastric bypass and sleeve gastrectomy.

slippage, which necessitates removal of the band or weight regain. Patients who have solely technical problems with their band may benefit from a band replacement or even a port replacement, depending on the situation [59]. Although removing the band relieves restrictive sensations, it is strongly linked to weight gain. The band replacement procedure is frequently associated with a significant complication rate of up to 20% [60].

After demonstrating its success in weight reduction and comorbidity improvement, the LSG was eventually employed as a stand-alone treatment, and it is today the most widely done bariatric procedure in the United States [61]. In other trials, however, the revision rate can reach up to 11%, whether due to insufficient weight loss or severe gastroesophageal reflux illness (GERD). There are several revision alternatives, and the most appropriate technique is determined by the need for the change. Those with severe reflux may benefit from bypass procedures, whereas patients with a dilated sleeve may benefit from re-SG [62].

The overall criteria for conversion were inadequate weight loss (mean incidence=45.8%), weight rebound (mean incidence=42.10%), and GERD (mean incidence=11%) in our review. Consequently, there were no significant difference in age, sex, or preconversion BMI, except for preconversion BMI for patients who had RYGB. The mean time for conversion was 54.68, 52.09, and 38.5 months for RYGB, LSG, and MGB, respectively.

	RYG	в	MGE	3		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
10.1.1 Early								
Salama et al, 2016	2	21	1	39	7.4%	4.00 (0.34, 46.95)	2016	
Pawan et al, 2017	1	9	5	26	8.6%	0.53 (0.05, 5.22)	2017	
Poublon et al, 2020	15	306	2	185	20.4%	4.72 [1.07, 20.86]	2020	
Nevo et al, 2021	5	33	2	21	14.9%	1.70 [0.30, 9.67]	2021	
Subtotal (95% CI)		369		271	51.3%	2.37 [0.93, 6.06]		
Total events	23		10					
Heterogeneity: Tau* =	0.00; Chi	*= 2.81	, df = 3 (P = 0.4	2); P = 09	6		
Test for overall effect								
10.1.2 late								
El malki et al. 2018	3	35	9	81	24.0%	0.75 (0.19, 2.96)	2018	
Nevo et al, 2021	8	33	4	21	24.8%	1.36 (0.35, 5.24)		
Subtotal (95% CI)		68		102	48.7%	1.01 [0.39, 2.66]		
Total events	11		13					
Heterogeneity: Tau ^a =	0.00; Ch	= 0.37	, df = 1 (P = 0.5	4); P = 09	6		
Test for overall effect								
Total (95% CI)		437		373	100.0%	1.57 [0.80, 3.07]		-
Total events	34		23					
Heterogeneity: Tau* =	0.00; Chi	*= 4.75	5, df = 5 (P = 0.4	5); P = 09	6		
Test for overall effect					.,	-		0.05 0.2 1 5 20
Test for subgroup diff			- F	10	0.000 01-	0.1.0×		RYGB MGB

Meta-analysis for incidence of postoperative major complications between RYGB and MGB. MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

Table 17 Rate of postoperative complications

No	Study	Early major RY	Early major SG	Early major MGB	Late major RY	Late major SG	Late major MGB
2	Abu-ghazla et al. [13]				1	2	
5	Moon <i>et al</i> . [16]				2	1	
6	Khoursheed et al. [17]	2	0				
7	Marin-Perez et al. [18]	2	3		8	1	
8	Stefanidis et al. [19]	0	0				
10	Carandina et al. [21]	4	1				
14	Ngiam <i>et al</i> . [25]	0	0		1	0	
15	Yeung et al. [26]	2	1		0	3	
16	Pawan <i>et al</i> . [27]	1	0	5			
17	Janik <i>et al</i> . [28]	44	17				
18	Creange et al. [29]	14	4				
19	Avsar <i>et al</i> . [30]	1	6		2	1	
22	Almalki <i>et al</i> . [33]				3		9
23	Qiu <i>et al</i> . [34]	3	0				
24	Janik <i>et al</i> . [35]	172	108				
25	Salama and Sabry [4]	2		1			
26	van Wezenbeek et al.				18	10	
	[36]						
27	Nevo et al. [37]	5		2	8		4
29	Yilmaz et al. [39]	2	3				
32	Antonopulos et al. [41]	11	7				
33	Poublon et al. [42]	15		2			
34	Al-Sabah et al. [43]	1	0				

LAGB, laparoscopic adjustable gastric band; MGB, mini gastric bypass; RCT, randomized clinical trial; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

It is generally known that individuals who have undergone previous restrictive operations and have had a poor response to weight loss can benefit from a gastric bypass conversion [63]. Although RYGB has been shown to be effective as a revisional technique, OAGB-MGB has recently been advocated as a revisional procedure [64]. Kermansaravi *et al* [65] used OAGB-MGB as an LSG conversion in 77

	Bypa	ss	Slee	ve		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Randorn, 95% CI
11.1.1 Leakage								
Stefanidis et al, 2013	0	25	0	23		Not estimable	2013	
Khourshed et al, 2013	1	53	0	42	2.3%	2.43 (0.10, 61.15)	2013	•
Marin-perez et al, 2013	0	39	1	20	2.3%	0.16 (0.01, 4.23)	2013	•
Caradina et al, 2014	4	74	1	34	4.0%	1.89 (0.20, 17.54)	2014	
Ngiam et al, 2016	1	9	0	9	2.2%	3.35 (0.12, 93.83)	2016	• • • • • • • • • • • • • • • • • • • •
Yeung et al, 2016	2	32	1	72	3.5%	4.73 (0.41, 54.20)	2016	
Pawan et al, 2017	2	35	0	17	2.4%	2.61 [0.12, 57.45]	2017	•
Yilmaz et al, 2017	0	9	2	23	2.4%	0.45 (0.02, 10.36)	2017	· · · ·
Janik et al, 2017	28	1354	16	1354	11.0%	1.77 (0.95, 3.28)	2017	
Avsar et al, 2018	1	29	2	20	3.4%	0.32 [0.03, 3.81]	2018	• • • • • • • • • • • • • • • • • • • •
Antonopulos et al, 2019	3	83	8	61	7.0%	0.25 [0.06, 0.98]	2019	•
Janik et al, 2021	88	5043	55		12.3%	2.95 [2.10, 4.14]	2021	
Subtotal (95% CI)		6785		10867	52.7%	1.39 [0.72, 2.69]		
Total events	130		86					
Heterogeneity: Tau ^a = 0.3	8; Chi ² = 1	9.40, df	= 10 (P =	0.04); P	= 48%			
Test for overall effect Z =	0.99 (P = ().32)						
11.1.2 Major bleeding								
Abu-ghazia et al, 2011	1	18	0	18	2.2%	3.17 (0.12, 83.17)	2011	• • • • • • • • • • • • • • • • • • • •
Caradina et al, 2014	2	74	0	34	2.5%	2.38 [0.11, 50.91]	2014	•
Wezenbeek et al, 2016	18	115	10	16	8.2%	0.11 [0.04, 0.34]	2016	←
Yeung et al, 2016	1	32	0	72	2.3%	6.90 [0.27, 174.17]	2016	
Janik et al, 2017	38	1354	6	1354	9.6%	6.14 [2.58, 14.61]	2017	
rilmaz et al, 2017	1	9	1	23	2.7%	2.75 [0.15, 49.36]	2017	
Pawan et al, 2017	1	35	0	17	2.2%	1.52 [0.06, 39.32]	2017	•
Avsar et al, 2018	0	29	2	20	2.4%	0.13 [0.01, 2.76]	2018	•
Antonopulos et al, 2019	1	83	1	61	2.9%	0.73 (0.04, 11.93)	2019	•
Janik et al, 2021	83	5043	50	9192	12.2%	3.06 [2.15, 4.35]	2021	
Subtotal (95% CI)		6792		10807	47.3%	1.44 [0.49, 4.23]		
Total events	144		70					
Heterogeneity: Tau ^a = 1.6	7; Chi ² = 3	9.34, df	= 9 (P < 0).0001);	P=77%			
Test for overall effect Z =								
Total (95% CI)		13577		21674	100.0%	1.42 [0.83, 2.42]		
Total events	274	10011	156	21014	100/07/	145 [0000 646]		
Heterogeneity: Tau ^a = 0.5		0.05 4		0.0004				
Heterogeneity: 1 au- = 0.5 Test for overall effect: Z =	-	-	- 20 (P *	0.0001)	1 = 00%	>		0.2 0.5 1 2 5
Test for overall effect 2 = Test for subgroup differer			ef = 1 /P -	. 0.065	- 0%			Bypass Sleeve
TRATICE SUCCEDUD CITIERE	ILES LINE							

Meta-analysis for incidence of postoperative leakage and major bleeding between gastric bypass and sleeve gastrectomy.

patients, with a low complication rate (3.9%) and an average EWL of 84.1% at 24 months. In a prospective trial of 56 patients who received OAGB-MGB as a revision of SG, Jamal *et al.* [66] discovered an EWL percent of more than 25% at 19 months and 58% at 50-month follow-up, with no mortality or short-term problems.

Because of its proven success as a primary surgery, OAGB-MGB is becoming increasingly popular, and it is now the third most commonly performed primary bariatric surgical operation worldwide [67].

Our meta-analysis showed no significant difference regarding postoperative BMI changes between gastric bypasses (RYGB+MGB) and SG; however, MGB compared with RYGB had a better decrease of BMI in 24 months, with no significant difference between them regarding the overall analysis. On the contrary, 24-, 36-, and 48-month postoperative % EWL was lower in SG than gastric bypasses, with overall significant better decrease. Conversely, when we compared RYGB with MGB at 12 months after conversion, there was more % EWL for RYGB, with significant overall difference.

In addition, the clinical results of Magouliotis *et al.* [68] on % EWL after 24 months backed up our ultimate judgment. Magouliotis *et al.* [68], Sharples *et al.* [69], and Zhou *et al.* [70] conducted metaanalyses that found no statistical difference in % EWL at 12 months, contrary to our findings. Sharples *et al.* [69] claimed that after 24 months, there was no statistical difference in % EWL. This

	RYG	0	MGI	1		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
12.1.1 leakage								
Pawan et al, 2017	0		2	26	9.3%	0.52 [0.02, 11.77]	2017	• • • • • • • • • • • • • • • • • • • •
El malki et al, 2018	1	35	5	81	19.0%	0.45 (0.05, 3.97)	2018	
Poublon et al, 2020	2	300	1	105	15.6%	1.21 [0.11, 13.44]	2020	
Nevo et al, 2021	5	33	1	21	18.3%	3.57 [0.39, 32.96]	2021	
Subtotal (95% CI)		383		313	62,1%	1.08 [0.32, 3.62]		
Total events	8		9					
Heterogeneity: Tau* =	0.00; Chi	*= 1.98	5, df = 3 (P = 0.5	8); 🖻 = 0%	,		
Test for overall effect	Z=0.13(P = 0.9	0					
12.1.2 Major bleeding								
Pawan et al, 2017	0	3	1	26	0.4%	0.09 [0.00, 20.90]	2017	
El malki et al, 2018	0	35	1	81	8.7%	0.76 [0.03, 19.01]	2018	
Poublon et al, 2020	8	306	1	185	20.8%	4.94 [0.61, 39.82]	2020	
Subtotal (95% CI)		350		292	37.9%	2.20 [0.47, 10.32]		
Total events	8		3					
Heterogeneity: Tau* =	0.00; Chi	= 1.33	2. ct = 2 (P = 0.5	2); P = 0%	,		
Test for overall effect	Z = 1.00 (P = 0.3	2)					
Total (95% CI)		733		605	100.0%	1.42 [0.55, 3.66]		
Total events	16		12					
Heterogeneity: Tau* =	0.00; Chi	= 3.71	9. cf = 6 (P = 0.7	1); P = 0%			
Test for overall effect								0.05 0.2 1 5 20
Test for subgroup diff		-				~~		RYOB MOB

Meta-analysis for incidence of postoperative leakage and major bleeding between RYGB and MGB. MGB, mini gastric bypass; RYGB, Roux-en-Y gastric bypass.

Table 18 Rate of	postoperative leaka	ge and major blee	ding complications

			Leakage			Major bleedin	g
No	Study	RYGB	SG	MGB	RY	SG	MGB
2	Abu-ghazla <i>et al.</i> [13]	0	1		1	0	
6	Khoursheed et al. [17]	1	0				
7	Marin-Perez et al. [18]	0	1				
8	Stefanidis et al. [19]	0	0		0	0	
10	Carandina et al., 2014 [21]	4	1		2	0	
14	Ngiam <i>et al.</i> [25]	1	0				
15	Yeung et al. [26]	2	1		1	0	
16	Pawan et al. [27]	0	0	2	0	0	1
17	Janik <i>et al</i> . [28]	28	16		36	6	
19	Avsar <i>et al</i> . [30]	1	2		0	2	
22	Almalki <i>et al., 2018</i> [33]	1		5	0		1
24	Janik <i>et al</i> . [35]	88	55		83	50	
27	Nevo et al. [37]	5		1			
29	Yilmaz et al., 2017 [39]	0	2		1	1	
32	Antonopulos et al. [41]	3	8		1	1	
33	Poublon et al. [42]	2		1	8		1

LAGB, laparoscopic adjustable gastric band; MGB, mini gastric bypass; No, number of patients; RCT, randomized clinical trial; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; VBG, vertical band gastroplasty.

meta-analysis showed a significant shorter operation time and length of stay for SG in comparison with gastric bypasses, whereas comparing RYGB and MGB, the later had a significant shorter operation time, with no difference regarding length of stay.

The early major complications, in our meta-analysis, were more evident in patients who had sleeve than gastric bypasses. It is tough to make firm conclusions; however, the greater complication rate after LSG could imply that the stomach tissue (e.g. scar tissue) needs time to heal following banding. There is a scarcity of literature on one-step or two-step revisions, but in a recent systematic review, Dang *et al.* [71] concluded that with equal morbidity rates, one-step and two-step revisional bariatric procedures are both safe alternatives. However, both SG and gastric bypasses had no significant difference regarding postoperative leakage and major bleeding.

The lack of randomized trials in the current literature about the examined topic is a major limitation of this study. We were only able to look at retrospective articles; therefore, it cannot be regarded definitive. A controlled randomized trial may provide a solution to the inquiry concerning the various forms of the benefits of revision surgery. Another significant issue that needs to be aware of is the possibility of a distinction (and as a result, there is a difference in weight reduction after revision) between the two groups. Finally, clinical studies are needed to be focused on different causes for revision surgeries to clarify if there is any relation between the indications and outcomes of the revision surgeries.

Recommendations

- Excessive pressure on the gastric remnant induced by excessive food intake, recurrent vomiting, or distal obstruction causes patients with increased stomach volume to dilate gradually over time.
- (2) Patients who do not have a larger gastric volume. This is a rare occurrence (around 10%), and it mainly happens in persons with eating disorders who eat a high-calorie soft or liquid diet. A malabsorptive method, such as a duodenal switch or a gastric bypass, is the best revisional surgery.
- (3) Our meta-analysis found no significant differences in postoperative BMI reductions between gastric bypasses (RYGB+MGB) and SG, although MGB had a greater BMI decrease in 24 months than RYGB, with no significant differences in the total study.
- (4) At 24, 36, and 48 months after surgery, SG had a lower EWL percent than gastric bypasses, with a much greater total reduction. When we compared RYGB with MGB at 12 months after conversion, RYGB had a higher EWL percent, with a significant overall difference.
- (5) There was no significant difference between bypasses and SG regarding major complications such as leakage and major bleeding.
- (6) A controlled randomized trial may provide a solution to the inquiry concerning the various forms of the benefits of revision surgery.
- (7) There is a difference in weight reduction after revision according to the cause for revision.

Conclusion

(1) Restrictive operations are more likely to result in weight increase over time, especially if patients have some risk factors (age over 45 years, BMI $>50 \text{ kg/m}^2$, eating habits maintenance, and absence of medical follow-up).

- (2) To evaluate the results, Deitel and Greeinstein advise use the percentage of excess BMI decrease. As a result, if it exceeds 65%, it is termed great; decent if it is between 50 and 65%; and failure, if it is less than 50%.
- (3) SG, RYGB, OAGB-MGB, SADI-S, and BPD-DS are all common revision surgeries, with no guidelines or assertions of agreement regarding the preferred method of revision.
- (4) The overall criteria for conversion were inadequate weight (mean loss incidence=45.8%), weight (mean rebound incidence=42.10%), and GERD (mean incidence=11%) in our review.
- (5) There was no significant difference in age, sex, or preconversion BMI, except for preconversion BMI for patients who had RYGB. The mean time for conversion was 54.68, 52.09, and 38.5 months for RYGB, LSG, and MGB, respectively.
- (6) Our meta-analysis showed no significant difference regarding postoperative BMI changes between gastric bypasses (RYGB +MGB) and SG; however, MGB compared with RYGB had a better decrease of BMI at 24 months, with no significant difference between them regarding the overall analysis.
- (7) The 24-, 36-, and 48-month postoperative % EWL was lower in SG than gastric bypasses, with overall significant better decrease. Conversely, when we compared RYGB with MGB at 12 months after conversion, there was more % EWL for RYGB, with significant overall difference.
- (8) The study showed a significant shorter operation time and length of stay for SG in comparison with gastric bypasses, whereas when comparing RYGB and MGB, the later had a significant shorter operation time, with no difference regarding length of stay.
- (9) The early major complications, in our metaanalysis, were more evident in patients who had sleeve than gastric bypasses.
- (10) Both SG and gastric bypasses as revisional operations had no significant difference regarding postoperative leakage and major bleeding.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Colquit JL, Picot J, Loveman E. Surgery for obesity. Cochrane Database Syst Rev. 2009; 2:CD003641.
- 2 Bekheit M, Katri K, Nabil W, Sharaan M, El Kayal E. Earliest signs and management of leakage after bariatric surgeries: single institute experience. Alex J Med 2013; 49:29–33.
- 3 Gumbs A, Duffy A, Bell R. Management of gastrogastric fistula after laparoscopic Roux-Y gastric bypass. Surg Obes Relat Dis 2006; 2:117–121.
- 4 Salama T, Sabry K. Redo surgery after failed open VBG: laparoscopic minigastric bypass versus laparoscopic roux en y gastric bypass—which is better?. Minim Invasive Surg 2016; 2016:1–4.
- 5 Müller MK, Attigah N, Wildi S, Hahnloser D, Hauser R, Clavien PA, et al. High secondary failure rate of rebanding after failed gastric banding. Surg Endosc 2008; 22:448–453.
- 6 Ardestani A, Lautz DB, Tavakkolizadeh A. Band revision versus Roux-en-Y gastric bypass conversion as salvage operation after laparoscopic adjustable gastric banding. Surg Obes Relat Dis 2011; 7:33–37.
- 7 Magouliotis DE, Tasiopoulou VS, Svokos AA, Svokos KA, Sioka E, Zacharoulis D. Roux-En-Y gastric bypass versus sleeve gastrectomy as revisional procedure after adjustable gastric band: a systematic review and meta-analysis. Obes Surg 2017; 27:1365–1373.
- 8 Patel S, Szomstein S, Rosenthal RJ. Reasons and outcomes of reoperative bariatric surgery for failed and complicated procedures (excluding adjustable gastric banding). Obes Surg 2011; 21:1209–1219.
- 9 Elnahas A, Graybiel K, Farrokhyar F, Gmora S, Anvari M, Hong D. Revisional surgery after failed laparoscopic adjustable gastric banding: a systematic review. Surg Endosc 2013; 27:740–745.
- 10 Park JY, Song D, Kim YJ. Causes and outcomes of revisional bariatric surgery: initial experience at a single center. Ann Surg Treat Res 2014; 86:295–301.
- 11 Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5:1–10.
- 12 Bhaskar BS, Rao GV, Joshi SB, Arun SK, Ajay SK. Anaesthesia for laparoscopic cholecystectomy in Bartter's syndrome. Indian J Anaesth 2010; 54:327.
- 13 Abu-Gazala S, Keidar A. Conversion of failed gastric banding into four different bariatric procedures. Surgery for Obesity and Related Diseases. 2012;8:400–7.
- 14 Tran TT, Pauli E, Lyn-Sue JR, et al. Revisional weight loss surgery after failed laparoscopic gastric banding: an institutional experience. Surg Endosc 2013; 27:4087–4093.
- 15 Shimizu H, Annaberdyev S, Motamarry I, Kroh M, Schauer PR, Brethauer SA, et al. Revisional bariatric surgery for unsuccessful weight loss and complications. Obes Surg 2013; 23:1766–1773.
- 16 Moon RC, Teixeira AF, Jawad MA. Conversion of failed laparoscopic adjustable gastric banding: sleeve gastrectomy or Roux-en-Y gastric bypass?. Surg Obes Relat Dis 2013; 9:901–907.
- 17 Khoursheed M, Al-Bader I, Mouzannar A, Al-Haddad A, Sayed A, Mohammad A, Fingerhut A. Sleeve gastrectomy or gastric bypass as revisional bariatric procedures: retrospective evaluation of outcomes. Surg Endosc 2013; 27:4277–4283.
- 18 Marin-Perez P, Betancourt A, Lamota M, et al. Outcomes after laparoscopic conversion of failed adjustable gastric banding to sleeve gastrectomy or Roux-en-Y gastric bypass. Br J Surg 2014; 101:254–260.
- 19 Stefanidis D, Malireddy K, Kuwada T, et al. Revisional bariatric surgery: perioperative morbidity is determined by type of procedure. Surg Endosc 2003; 27:4504–4510.
- 20 Carr WRJ, Jennings NA, Boyle M, et al. A retrospective comparison of early results of conversion of failed gastric banding to sleeve gastrectomy or gastric bypass. Surg Obes Relat Dis 2015; 11:379–384.
- 21 Carandina S, Maldonado PS, Tabbara M, et al. Two-step conversion surgery after failed laparoscopic adjustable gastric banding. Comparison between laparoscopic Roux-en-Y gastric bypass and laparoscopic gastric sleeve. Surg Obes Relat Dis 2014; 00–00
- 22 Gonzalez-Heredia R, Masrur M, Patton K, Bindal V, Sarvepalli S, Elli E. Revisions after failed gastric band: sleeve gastrectomy and Roux-en-Y gastric bypass. Surg Endosc 2015; 29:2533–7.

- 23 Mendes-Castro A, Montenegro J, Cardoso JF, Simões G, Ferreira C, Preto J, Carneiro S. Laparoscopic adjustable gastric band: complications, removal and revision in a Portuguese highly differentiated obesity treatment center. Acta medica portuguesa. 2015;28:735–40.
- 24 Angrisani L, Santonicola A, Hasani A, et al. Five-year results of laparoscopic sleeve gastrectomy: effects on gastroesophageal reflux disease symptoms and co-morbidities. Surg Obes Relat Dis 2016; 12:960–968.
- 25 Ngiam KY, Khoo VY, Kong L, Cheng AK. Laparoscopic adjustable gastric banding revisions in Singapore: a 10-year experience. Obes Surg 2016; 26:1069–1074.
- 26 Yeung L, Durkan B, Barrett A, Kraft C, Vu K, Phillips E, Burch M. Singlestage revision from gas- tric band to gastric bypass or sleeve gastrectomy: 6- and 12-month outcomes. Surg Endosc 2016; 30:2244–2250.
- 27 Chansaenroj P, Aung L, Lee WJ, Chen SC, Chen JC, Ser KH. Revision procedures after failed adjustable gastric banding: comparison of efficacy and safety. Obesity Surgery. 2017;27:2861–7.
- 28 Janik MR, Rogula TG, Mustafa RR, Saleh AA, Khaitan L. Safety of revision sleeve gastrectomy compared to Roux-Y gastric bypass after failed gastric banding: analysis of the MBSAQIP. Ann Surg 2019; 269:299– 303.
- 29 Creange C, Jenkins M, Pergamo M, Fielding G, Ren-Fielding C, Schwack B. Gastric band conversion to roux-en-Y gastric bypass shows greater weight loss than conversion to sleeve gastrectomy: 5-year outcomes. Surg Obes Relat Dis 2018; 14:1531–1536.
- 30 Avsar FM, Sapmaz A, Uluer A, Erdem NZ. Conversion Surgery for failed adjustable gastric banding: outcomes with sleeve gastrectomy vs roux-en-Y gastric bypass. Obes Surg 2018; 28:13573–9.
- 31 Khan OA, Mcglone ER, Maynard W, Hopkins J, Dexter S, Finlay I, et al. Single-stage conversions from failed gastric band to sleeve gastrectomy versus roux-en-Y gastric bypass: results from the United Kingdom National Bariatric Surgical Registry. Surg Obes Relat Dis 2018; XX: S1550728918303423.
- 32 Rafols JP, Al Abbas Al, Devriendt S, Guerra A, Herrera MF, Himpens J, et al. Roux-En-Y gastric bypass, sleeve gastrectomy, or one anastomosis gastric bypass as rescue therapy after failed adjustable gastric banding: a multicenter comparative study. Surg Obes Relat Dis 2018; 14:1659–66.
- 33 Almalki OM, Lee WJ, Chen JC, Ser KH, Lee YC, Chen SC. Revisional gastric bypass for failed restrictive procedures: comparison of singleanastomosis (mini-) and Roux-en-Y gastric bypass, Obes Surg 2018; 28:970–975.
- **34** Qiu J, Lundberg PW, Javier Birriel T, Claros L, Stoltzfus J, El Chaar M, *et al.* Revisional bariatric surgery for weight regain and refractory complications in a single MBSAQIP Accredited Center: what are we dealing with?. Obes Surg 2018; 28:2789–2795.
- 35 Janik MR, Rogula TG, Mustafa RR, Alhaj Saleh A, Khaitan L. Safety of revision sleeve gastrectomy compared to Roux-Y gastric bypass after failed gastric banding: analysis of the MBSAQIP. Ann Surg 2021; 269:299– 303.
- 36 van Wezenbeek MR, van Oudheusden TR, Smulders JF, Nienhuijs SW, Luyer MD. Transection versus preservation of the neurovascular bundle of the lesser omentum in primary Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2016; 12:283–9.
- 37 Nevo N, Lessing Y, Abu-Abeid S, Goldstein AL, Hazzan D, Nachmany I, Eldar SM. Roux-en-Y gastric bypass versus one anastomosis gastric bypass as a preferred revisional bariatric surgery after a failed silastic ring vertical gastroplasty. Obes Surg 2021; 31:654–658.
- 38 AlSabah S, Alsharqawi N, Almulla A, Akrof S, Alenezi K, Buhaimed W, et al. Approach to poor weight loss after laparoscopic sleeve gastrectomy: resleeve vs. gastric bypass. Obes Surg 2016; 26:2302–2307.
- 39 Yilmaz H, Ece I, Sahin M. Revisional surgery after failed laparoscopic sleeve gastrectomy: retrospective analysis of causes, results, and technical considerations. Obes Surg 2017; 27:2855–2860.
- 40 Chiappetta S, Stier C, Scheffel O, Squillante S, Weiner RA. Mini/one anastomosis gastric bypass versus Roux-en-Y gastric bypass as a second step procedure after sleeve gastrectomy – a retrospective cohort study. Obes Surg 2019; 29:819–827.
- 41 Antonopulos C, Rebibo L, Calabrese D, Ribeiro-Parenti L, Arapis K, Dhahri A, et al. Comparison of repeat sleeve gastrectomy and Roux-en-Y gastric bypass in case of weight loss failure after sleeve gastrectomy. Obes Surg 2019; 29:3919–3927.
- 42 Poublon N, Chidi I, Bethlehem M, Kuipers E, Gadiot R, Emous M, et al. One anastomosis gastric bypass vs. Roux-en-Y gastric bypass, remedy for insufficient weight loss and weight regain after failed restrictive bariatric surgery. Obes Surg 2020; 30:3287–3294.

- **43** Al-Sabah S, Al Haddad E, Akrof S, Alenezi K, Al-Subaie S. Midterm results of revisional bariatric surgery postsleeve gastrectomy: resleeve versus bypass. Surg Obes Relat Dis 2020; 16:1747–1756.
- 44 Parmar CD, Gan J, Stier C, Dong Z, Chiappetta S, El-Kadre L, et al. One anastomosis/mini gastric bypass (OAGB-MGB) as revisional bariatric surgery after failed primary adjustable gastric band (LAGB) and sleeve gastrectomy (SG): a systematic review of 1075 patients. Int J Surg 2020; XX:XX.
- 45 Suter M, Calmes J, Paroz A, Giusti V. A 10-year expe- rience with laparoscopic gastric banding for morbid obesity: high long-term complication and failure rates. Obes Surg 2006; 16:829–835.
- 46 Favretti F, Segato G, Ashton D, Busetto L, De Luca M, Mazza M, et al. Laparoscopic adjustable gastric banding in 1,791 consecutive obese patients: 12-year results. Obes Surg 2007; 17:168–175.
- 47 Gagner M, Gumbs AA. Gastric banding: conversion to sleeve, bypass, or DS. Surg Endosc 2007; 21:1931–1935.
- 48 Lalor PF, Tucker ON, Szomstein S, Rosenthal RJ. Complications after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 2008; 4:33–38.
- 49 Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 2008; 247:401–407.
- 50 Nocca D, Krawczykowsky D, Bomans B, Noël P, Picot MC, Blanc PM, et al. A prospective multicenter study of 163 sleeve gastrectomies: results at 1 and 2 years. Obes Surg 2008; 18:560–565.
- 51 Brethauer SA, Hammel JP, Schauer PR. Systematic review of sleeve gastrectomy as staging and primary bariatric procedure. Surg Obes Relat Dis 2009; 5:469–475.
- 52 Koliaki C, Liatis S, Le Roux CW, Kokkinos A. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC endocrine disorders. 2017;17:1–2.
- 53 Guan B, Chong TH, Peng J, Chen Y, Wang C, Yang J. Mid-long-term revisional surgery after sleeve gastrectomy: a systematic review and metaanalysis. Obes Surg 2019; 29:1965–1975.
- 54 Ferrer-Márquez M, Belda-Lozano R, Solvas-Salmerón MJ, Ferrer-Ayza M. Revisional surgery after laparoscopic sleeve gastrectomy. Surg Laparosc Endosc Percutan Tech 2015; 25:6–9.
- 55 Deguines JB, Verhaeghe P, Yzet T, Robert B, Cosse C, Regimbeau JM. Is the residual gastric volume after laparoscopic sleeve gastrectomy an objective criterion for adapting the treatment strategy after failure?. Surg Obes Relat Dis 2013; 9:660–666.
- 56 Elnahas AI, Jackson TD, Hong D. Management of failed laparoscopic Roux-en-Y gastric bypass. Bariatr Surg Pract Patient Care 2014; 9:36–40.
- 57 Kuzminov A, Palmer AJ, Wilkinson S, Khatsiev B, Venn AJ. Re-operations after secondary bariatric surgery: a systematic review. Obes Surg 2016; 26:2237–2347.
- 58 Ghanem M, Ranvier GF. Revisional bariatric surgery: a review of the current recommendations. Saudi J Laparosc 2016; 1:5.

- 59 Schouten R, van Dielen FM, Greve JWM. Re-operation after laparoscopic adjustable gastric banding leads to a further decrease in BMI and obesityrelated co-morbidities: results in 33 patients. Obes Surg 2006; 16:821–828.
- 60 Vijgen G, Schouten R, Pelzers L, Greve JW, Van Helden SH, Bouvy ND. Revision of laparoscopic adjustable gastric banding: success or failure?. Obes Surg 2012; 22:287–292.
- 61 Li J-F., Lai D-D., Lin Z-H., Jiang T-Y., Zhang A-M., Dai J-F. Comparison of the long-term results of Roux-en-Y gastric bypass and sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis of randomized and nonrandomized trials. Surg Laparosc Endosc Percutan Tech 2014; 24:1–11.
- 62 Homan J, Betzel B, Aarts EO, van Laarhoven KJ, Janssen IM, Berends FJ. Secondary surgery after sleeve gastrectomy: Roux-en-Y gastric bypass or biliopancre- atic diversion with duodenal switch. Surg Obes Relat Dis 2015; 11:771–777.
- **63** Musella M, Bruni V, Greco F, Raffaelli M, Lucchese M, Susa A, *et al.* Conversion from laparoscopic adjustable gastric banding (LAGB) and laparoscopic sleeve gastrectomy (LSG) to one anastomosis gastric bypass (OAGB): preliminary data from a multicenter retrospective study. Surg Obes Relat Dis 2019; 15:1332–1339.
- 64 Noun R, Slim R, Chakhtoura G, Gharios J, Chouillard E, Tohmé-Noun C. Resectional one anastomosis gastric bypass/mini gastric bypass as a novel option for revision of restrictive procedures: preliminary results. J Obes 2018; 2018.
- **65** Kermansaravi M, Shahmiri SS, DavarpanahJazi AH, Valizadeh R, Berardi G, Vitiello A, *et al.* One anastomosis/mini-gastric bypass (OAGB/MGB) as revisional surgery following primary restrictive bariatric procedures: a systematic review and meta-analysis. Obes Surg 2020; 28:1–4.
- 66 Jamal MH, Elabd R, AlMutairi R, Albraheem A, Alhaj A, Alkhayat H, et al. The safety and efficacy of one anastomosis gastric bypass as a revision for sleeve gastrectomy. Obes Surg 2020; 30:2280–2284.
- 67 Musella M, Susa A, Manno E, De Luca M, Greco F, Raffaelli M, et al. Complications following the mini/one anastomosis gastric bypass (MGB/ OAGB): a multi-institutional survey on 2678 patients with a mid-term (5 years) follow-up. Obes Surg 2017; 27:2956–2967.
- **68** Magouliotis DE, Tasiopoulou VS, Sioka E, Zacharoulis D. Robotic versus laparoscopic sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis. Obes Surg 2017; 27:245.
- 69 Sharples A, Charalampakis V, Daskalakis M, Tahrani A, Singhal R. Systematic review and meta-analysis of outcomes after revisional bariatric surgery fol- lowing a failed adjustable gastric band. Obes Surg 2017; 27:2522–2236.
- 70 Zhou R, Poirier J, Torquati A, Omotosho P. Short-term outcomes of conversion of failed gastric banding to laparoscopic sleeve gastrectomy or Roux-En-Y gastric bypass: a meta-analysis. Obes Surg 2019; 29:420–425.
- **71** Dang J, Switzer N, Wu J, Gill R, Shi X, Thereaux J, *et al.* Gastric band removal in revisional bariatric surgery, one-step versus two-step: a systematic review and meta-analysis. Obes Surg 2016; 26:866–873.